yunaseo's picture
yunase/DistilRoBertaModel_emotion_detection
2bd5910 verified
metadata
license: apache-2.0
base_model: distilroberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: emotions_distilroberta
    results: []

emotions_distilroberta

This model is a fine-tuned version of distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5345
  • F1 Micro: 0.6750
  • F1 Macro: 0.5924
  • Accuracy: 0.2078

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy
0.7583 0.41 20 0.6581 0.5780 0.3558 0.1055
0.6291 0.82 40 0.5893 0.6285 0.4836 0.1424
0.5796 1.22 60 0.5759 0.6319 0.5261 0.1618
0.5288 1.63 80 0.5409 0.6585 0.5526 0.1430
0.5111 2.04 100 0.5339 0.6681 0.5648 0.1961
0.4635 2.45 120 0.5291 0.6684 0.5714 0.1786
0.4544 2.86 140 0.5282 0.6726 0.5787 0.1618
0.4398 3.27 160 0.5281 0.6736 0.5833 0.2052
0.3948 3.67 180 0.5309 0.6650 0.5896 0.1890
0.41 4.08 200 0.5265 0.6785 0.5782 0.2168
0.3722 4.49 220 0.5345 0.6750 0.5924 0.2078
0.3617 4.9 240 0.5295 0.6769 0.5822 0.2155
0.3362 5.31 260 0.5358 0.6696 0.5854 0.1851
0.3204 5.71 280 0.5438 0.6762 0.5747 0.2097
0.3194 6.12 300 0.5503 0.6764 0.5768 0.1832
0.2921 6.53 320 0.5599 0.6734 0.5787 0.1961
0.2938 6.94 340 0.5532 0.6753 0.5863 0.1806
0.2708 7.35 360 0.5634 0.6735 0.5782 0.1922
0.2625 7.76 380 0.5716 0.6727 0.5756 0.1961
0.2565 8.16 400 0.5671 0.6739 0.5798 0.1922
0.2403 8.57 420 0.5816 0.6688 0.5735 0.1728
0.2466 8.98 440 0.5818 0.6739 0.5744 0.1871
0.2331 9.39 460 0.5826 0.6722 0.5762 0.1922
0.2233 9.8 480 0.5843 0.6738 0.5768 0.1942

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2