File size: 2,164 Bytes
41f7583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
---
This model is for debugging. It is randomly initialized with the config from [nvidia/Hymba-1.5B-Instruct](https://huggingface.co/nvidia/Hymba-1.5B-Instruct) but is of smaller size.
Codes:
```python
from huggingface_hub import create_repo, upload_folder
import os
import torch
import transformers
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed
model_id = "nvidia/Hymba-1.5B-Instruct"
repo_id = "yujiepan/hymba-tiny-random"
save_path = f"/tmp/{repo_id}"
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
config.conv_dim = {str(i): 32 for i in range(3)}
config.hidden_size = 16
config.intermediate_size = 32
config.num_attention_heads = 2
config.num_key_value_heads = 1
config.v_head_dim = 8
config.num_hidden_layers = 3
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)
model = AutoModelForCausalLM.from_config(
config, torch_dtype=torch.bfloat16, trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
model_id, trust_remote_code=True)
set_seed(42)
with torch.no_grad():
for _, p in sorted(model.named_parameters()):
torch.nn.init.uniform_(p, -0.2, 0.2)
model.save_pretrained(save_path)
prompt = 'Hello!'
messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages.append({"role": "user", "content": prompt})
tokenized_chat = tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
outputs = model.cuda().generate(
tokenized_chat,
max_new_tokens=16,
do_sample=False,
temperature=0.7,
use_cache=True,
)
input_length = tokenized_chat.shape[1]
response = tokenizer.decode(
outputs[0][input_length:], skip_special_tokens=True)
print(f"Model response: {response}")
os.system(f"ls -alh {save_path}")
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
```
|