ppo-lunar / config.json
yugotothebar's picture
Uploaded PPO trained agent
e72f0e5
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78e866eb57e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e866eb5870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e866eb5900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e866eb5990>", "_build": "<function ActorCriticPolicy._build at 0x78e866eb5a20>", "forward": "<function ActorCriticPolicy.forward at 0x78e866eb5ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e866eb5b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e866eb5bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x78e866eb5c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e866eb5cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e866eb5d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e866eb5e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e866eb8740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700743305026406908, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPIsr0pWGe6KKqBOYClbjV2yK26dAGhuAAAgD8AAIA/s2amvUj5h7p6Er27eeS0OL1OMbuOo0o6AACAPwAAgD8WS+C+F+hJPyGBK77FvdK+Ct2Gvk6vCD4AAAAAAAAAAAZBHz5SCNi7vfDauOkxeTajmDK9tQ0COAAAgD8AAIA/GozFPR8tjrmaipq7tIZRNzwYObtfWbW2AACAPwAAgD9aJBi+9xUEP6vpzj0aUgK+QjAjPAZ9db0AAAAAAAAAAJqYoz17CpO63FIoOw/1mDXK5d43iKyONAAAgD8AAIA/+uIaPnGTars7+O26FNOGOOEnkbweDFI5AACAPwAAgD8Assq99lw6ut+TvDsKPqI1ofAPuuYGmTQAAIA/AACAP5ofUrwntms/gxyRPAsll77Kk+s85XWaPQAAAAAAAAAAzVA5vOy5qLknBxQ8nae5Na/birupN7c0AACAPwAAgD9m1iE8/1Y+P0B9q70j0Wu+2DUZvXiWEroAAAAAAAAAAACAUbrsUYQ2hzWzOkU0NbY68Gg7wVQytQAAgD8AAIA/DZjMPVxrZ7oQCsu8hwpRt8oIUzv2L7w2AACAPwAAgD8ARva9bADZu9OgrrwjL488klr0vAP9dD0AAIA/AACAP4CqJT4U4LS6tV70OiCTh7UO3+e7O+QLugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGH57ayrxRWMAWyUTegDjAF0lEdApPAoA2hqTXV9lChoBkdAXbbRa5f+j2gHTegDaAhHQKTwd8+iaiN1fZQoaAZHQGCV0eMhouhoB03oA2gIR0Ck8RwwsXizdX2UKGgGR0BsUbvRZ2ZBaAdNnQFoCEdApPEn8Kohp3V9lChoBkdAXm5C/oJRfmgHTegDaAhHQKTxZxx1gYx1fZQoaAZHwDPnBN21Ul1oB0v6aAhHQKT0u8M/hVF1fZQoaAZHQGOibypaRp1oB03oA2gIR0Ck9Wz8xbjcdX2UKGgGR0AwuOZssQNDaAdNHAFoCEdApPXtD6WPcXV9lChoBkfAE1h99c8klmgHTSABaAhHQKT20B+Wnj11fZQoaAZHwDS8ZOzposZoB00PAWgIR0Ck9wwZXMhYdX2UKGgGR0A0vDdgv115aAdNCgFoCEdApPekJng5znV9lChoBkdAbfO6tknTiWgHTY4BaAhHQKT4RoUSIxh1fZQoaAZHQDRoWj4593NoB00XAWgIR0Ck+GXLvCuVdX2UKGgGR0BZM0zKs+3ZaAdN6ANoCEdApPxYa99MK3V9lChoBkfAACLn9vS+g2gHS+5oCEdApPyRyOq//XV9lChoBkdAY3hDNyHVPWgHTegDaAhHQKT9H0L+glF1fZQoaAZHQDfjCaZx7zFoB00PAWgIR0ClAAywW3z+dX2UKGgGR0BVfQ0waisXaAdN6ANoCEdApQKr2+PBBXV9lChoBkdAL0hew9q1xGgHS/hoCEdApQsvl8w6AHV9lChoBkdAW+S1x82Ji2gHTegDaAhHQKULTNpudf91fZQoaAZHQGLaSCOFQEZoB03oA2gIR0ClDnN4RmK7dX2UKGgGR0BhCWUD+zdDaAdN6ANoCEdApQ9lUOuq3nV9lChoBkdAYIxhaTwDvGgHTegDaAhHQKUYw7CBPKx1fZQoaAZHQGUYZBLPD51oB03oA2gIR0ClGeQIt16mdX2UKGgGR0Bk8ZzYEnstaAdN6ANoCEdApR7OOZLIxXV9lChoBkdAY6ZDQ7cO9WgHTegDaAhHQKUfiNTcZcd1fZQoaAZHQGRWZgG8mKJoB03oA2gIR0ClISrvLHMmdX2UKGgGR0BkGUSElE7XaAdN6ANoCEdApSF2iN83M3V9lChoBkdAYke2ZRbbDmgHTegDaAhHQKUiThc7heh1fZQoaAZHQGKoqp97WupoB03oA2gIR0ClIzasZHd5dX2UKGgGR0BrbhzaK1ohaAdNjwFoCEdApSeJZ8rqdHV9lChoBkdAYYXtALRa5mgHTegDaAhHQKUo6zyjHn51fZQoaAZHQGNx/dAPd2xoB03oA2gIR0ClKUKVQhwEdX2UKGgGR0Bh3TAzpHI7aAdN6ANoCEdApSoBWcSXdHV9lChoBkfAQI435vcafmgHTUQBaAhHQKUq/IQvpQl1fZQoaAZHQGApb6guh9NoB03oA2gIR0ClMH3fAKv3dX2UKGgGR0BgvB4B3iaRaAdN6ANoCEdApTeE1AJLNHV9lChoBkdAYWoIN3GGVWgHTegDaAhHQKU3myFfzBh1fZQoaAZHQGBYajesPrhoB03oA2gIR0ClOp2uoxYadX2UKGgGR0BjH26Ae7tiaAdN6ANoCEdApTu45vLowHV9lChoBkdAXq2s+3YthGgHTegDaAhHQKU840w8GLV1fZQoaAZHQBlBxkupS75oB00YAWgIR0ClTOCjk+5fdX2UKGgGR0BfTOmm+CbuaAdN6ANoCEdApVENkpZwGXV9lChoBkdAW/JfCyhSL2gHTegDaAhHQKVS2SgXdj51fZQoaAZHQGD2tDc/MW5oB03oA2gIR0ClUxqzAvcrdX2UKGgGR0BhdXYnOSntaAdN6ANoCEdApVPA91U2k3V9lChoBkdAYS2KWszVMGgHTegDaAhHQKVUaPBi1At1fZQoaAZHQFoVTkQwsXloB03oA2gIR0ClV9FdC3PSdX2UKGgGR0BesyZ4Oc2BaAdN6ANoCEdApVjLD8+A3HV9lChoBkdAYP14rSVnmWgHTegDaAhHQKVZBZezD4x1fZQoaAZHQFwqP2wmmchoB03oA2gIR0ClWYqVY6n0dX2UKGgGR0BlQWEf1YhdaAdN6ANoCEdApVow3T/hl3V9lChoBkfAKR/gzguRLmgHTTEBaAhHQKVb3OE/Spl1fZQoaAZHwCWjTvy9VWFoB01GAWgIR0ClXDVLJ0W/dX2UKGgGR0BmgJOclPadaAdN6ANoCEdApV3nShJyyXV9lChoBkdAa9mgFHJ9zGgHTRIDaAhHQKVfUm0mdAh1fZQoaAZHQGG3ir1dxABoB03oA2gIR0ClY0mf5DZ2dX2UKGgGR8BCbkcjqv/zaAdNUwFoCEdApWaVXNke63V9lChoBkdAYhF961LJ0WgHTegDaAhHQKVoal3Qla91fZQoaAZHwB7ggTyrgfloB00yAWgIR0ClaMF1jiGWdX2UKGgGR0BgEPSc9W6taAdN6ANoCEdApWnw+Sr5qXV9lChoBkdAWehQemvW6WgHTegDaAhHQKV4khIOH311fZQoaAZHwDGpXhfjS5RoB01GAWgIR0Clehi1Z1V6dX2UKGgGR0Bk0HyoXKr8aAdN6ANoCEdApXt4q7ROUXV9lChoBkdAXtHlmvnr6mgHTegDaAhHQKV+H+irT6V1fZQoaAZHQGYl2gnMMZxoB03oA2gIR0ClfuSWZ7XydX2UKGgGR0BgUGlj3EhraAdN6ANoCEdApYKj0Bfa6HV9lChoBkdAWwlY/3WWhWgHTegDaAhHQKWDw6xPfsN1fZQoaAZHQGGJDh99c8loB03oA2gIR0ClhAOez2OAdX2UKGgGR0BhEjSy+pOvaAdN6ANoCEdApYSTPMSsbXV9lChoBkfAK4kMTewcHWgHTVABaAhHQKWFJ7Y02tN1fZQoaAZHQGGnu9FnZkFoB03oA2gIR0ClhYShi9ZidX2UKGgGR0BgP/eJpFkQaAdN6ANoCEdApYhclZ5iVnV9lChoBkfAInlg2Ifr8mgHTS4BaAhHQKWIiiZfD1p1fZQoaAZHQGW9CrcTJyRoB03oA2gIR0CljPsrmQr+dX2UKGgGR0Ao39KmKqGUaAdNEQFoCEdApZB9SXMQmXV9lChoBkdAXWUmmce8w2gHTegDaAhHQKWVvoYekpJ1fZQoaAZHQDgF5hScbzdoB01OAWgIR0CllgldTo+wdX2UKGgGR0BbEcUypJf6aAdN6ANoCEdApZcaxHG0eHV9lChoBkdAYYXnjhky12gHTegDaAhHQKWXW77Kq4p1fZQoaAZHQGE7A9FF2FFoB03oA2gIR0ClmE4NiH6/dX2UKGgGR0Bj/9AJLM9saAdN6ANoCEdApaVXhuO0cHV9lChoBkfAQguIMz/IbWgHTRMBaAhHQKWoxNmlImR1fZQoaAZHQGKcf7JnxrloB03oA2gIR0ClqeMmF8G+dX2UKGgGR0BAy/8MuvlmaAdNHQFoCEdApatBSBK+SXV9lChoBkdAYPPIPsiSq2gHTegDaAhHQKWvMuoxYaJ1fZQoaAZHQFtaiAUcn3NoB03oA2gIR0CltNslTm4idX2UKGgGR0BhsRdUsFt9aAdN6ANoCEdApbYVCXyAhHV9lChoBkdAYPBuTA31jGgHTegDaAhHQKW2W/Dcdo51fZQoaAZHQCH2jEehf0FoB00cAWgIR0CltpBKUVzqdX2UKGgGR0BgPQxpL26DaAdN6ANoCEdApbb0QiA2AHV9lChoBkdAXXr3yqdYn2gHTegDaAhHQKW3aOQyRCB1fZQoaAZHQFym+H8CPp9oB03oA2gIR0ClugPoNd7fdX2UKGgGR0BkmbE1l5GCaAdN6ANoCEdApb1ub9ZRsXV9lChoBkdAMtgT7EYO2GgHTQkBaAhHQKW+2tnwob51fZQoaAZHQFbF/6fra/RoB03oA2gIR0Clv/onrpqzdX2UKGgGR0BeGG5H3DekaAdN6ANoCEdApcTADFId2nV9lChoBkdAWZdzr/sE7mgHTegDaAhHQKXGDmZE2Hd1fZQoaAZHQGJMtke6qbVoB03oA2gIR0ClxwXSro4ddX2UKGgGR0BK36dUbT+eaAdL9mgIR0Clx2CuEEkjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}