Hanna Abi Akl
commited on
Commit
·
8daadc1
1
Parent(s):
b0fd1ba
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
@@ -91,22 +92,22 @@ import torch
|
|
91 |
model = SentenceTransformer('yseop/roberta-base-finance-hypernym-identification')
|
92 |
# Our corpus containing the list of hypernym labels
|
93 |
hypernyms = ['Bonds',
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
hypernym_embeddings = model.encode(hypernyms, convert_to_tensor=True)
|
111 |
# Query sentences are financial terms to match to the predefined labels
|
112 |
queries = ['Convertible bond', 'weighted average coupon', 'Restriction 144-A']
|
@@ -117,9 +118,14 @@ for query in queries:
|
|
117 |
# We use cosine-similarity and torch.topk to find the highest 5 scores
|
118 |
cos_scores = util.pytorch_cos_sim(query_embedding, hypernym_embeddings)[0]
|
119 |
top_results = torch.topk(cos_scores, k=top_k)
|
120 |
-
print("\
|
|
|
|
|
|
|
|
|
121 |
print("Query:", query)
|
122 |
-
print("\
|
|
|
123 |
for score, idx in zip(top_results[0], top_results[1]):
|
124 |
print(hypernyms[idx], "(Score: {:.4f})".format(score))
|
125 |
```
|
|
|
1 |
---
|
2 |
+
inference: false
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
|
|
92 |
model = SentenceTransformer('yseop/roberta-base-finance-hypernym-identification')
|
93 |
# Our corpus containing the list of hypernym labels
|
94 |
hypernyms = ['Bonds',
|
95 |
+
\t\t\t'Forward',
|
96 |
+
\t\t\t'Funds',
|
97 |
+
\t\t\t'Future',
|
98 |
+
\t\t\t'MMIs',
|
99 |
+
\t\t\t'Option',
|
100 |
+
\t\t\t'Stocks',
|
101 |
+
\t\t\t'Swap',
|
102 |
+
\t\t\t'Equity Index',
|
103 |
+
\t\t\t'Credit Index',
|
104 |
+
\t\t\t'Securities restrictions',
|
105 |
+
\t\t\t'Parametric schedules',
|
106 |
+
\t\t\t'Debt pricing and yields',
|
107 |
+
\t\t\t'Credit Events',
|
108 |
+
\t\t\t'Stock Corporation',
|
109 |
+
\t\t\t'Central Securities Depository',
|
110 |
+
\t\t\t'Regulatory Agency']
|
111 |
hypernym_embeddings = model.encode(hypernyms, convert_to_tensor=True)
|
112 |
# Query sentences are financial terms to match to the predefined labels
|
113 |
queries = ['Convertible bond', 'weighted average coupon', 'Restriction 144-A']
|
|
|
118 |
# We use cosine-similarity and torch.topk to find the highest 5 scores
|
119 |
cos_scores = util.pytorch_cos_sim(query_embedding, hypernym_embeddings)[0]
|
120 |
top_results = torch.topk(cos_scores, k=top_k)
|
121 |
+
print("\
|
122 |
+
\
|
123 |
+
======================\
|
124 |
+
\
|
125 |
+
")
|
126 |
print("Query:", query)
|
127 |
+
print("\
|
128 |
+
Top 5 most similar hypernyms:")
|
129 |
for score, idx in zip(top_results[0], top_results[1]):
|
130 |
print(hypernyms[idx], "(Score: {:.4f})".format(score))
|
131 |
```
|