File size: 2,884 Bytes
f5ef33a
 
 
 
 
 
 
 
d132baf
f5ef33a
d132baf
f5ef33a
 
d132baf
bac2e1c
d132baf
f5ef33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d132baf
f5ef33a
 
3531150
f5ef33a
 
 
d132baf
f5ef33a
 
3531150
f5ef33a
 
 
d132baf
f5ef33a
3531150
f5ef33a
 
 
d132baf
f5ef33a
 
 
3531150
f5ef33a
 
3531150
f5ef33a
 
 
 
d132baf
 
 
 
 
 
 
f5ef33a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
---

# MGCA-ResNet50 Checkpoint Model Card

A retrained MGCA-ResNet50 model for benchmarking medical vision-language pre-training methods within the BenchX framework.

## Model Details
- **Model Type**: MGCA-ResNet50
- **Architecture**: ResNet-50 image encoder and BioClinicalBERT text encoder
- **Original Papers**: [Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning](https://arxiv.org/abs/2210.06044)
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX

## Intended Use
- **Primary Use Cases**:
  - Benchmarking performance for Medical Image Classification
  - Benchmarking performance for Medical Image Segmentation
  - Benchmarking performance for Medical Report Generation

## Pre-Training Data
- **Dataset**: 
  - Data source(s): MIMIC-CXR
  - Types of medical images: Frontal chest X-rays
  - Text data type: Associated radiology reports

## Prerequisites

Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX. 

## Training & Evaluation

### 1. Classification

To fine-tune MGCA-ResNet50 for classification, run this command:

```
python bin/train.py config/classification/<dataset_name>/mgca_resnet50.yml
```

### 2. Segmentation
To fine-tune MGCA-ResNet50 for segmentation, run this command:

```
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/mgca_resnet50.yml
```

### 3. Report Generation
To fine-tune MGCA-ResNet50 for report generation, run this command:
```
python bin/train.py config/report_generation/<dataset_name>/mgca_resnet50.yml
```

### 4. Evaluation
To evaluate fine-tuned MGCA-ResNet50 models, run:

```
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/mgca_resnet50.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>

# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/mgca_resnet50.yml <path_to_checkpoint>
```

## Citations
```bibtex
@article{wang2022multi,
  title={Multi-granularity cross-modal alignment for generalized medical visual representation learning},
  author={Wang, Fuying and Zhou, Yuyin and Wang, Shujun and Vardhanabhuti, Varut and Yu, Lequan},
  journal={Advances in NeurIPS},
  volume={35},
  pages={33536--33549},
  year={2022}
}
```
```bibtex
@inproceedings{zhou2024benchx,
  title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
  author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
  booktitle={Proceedings of NeurIPS},
  year={2024}
}
```