DiffuseStyleGesture / main /train /training_loop.py
youngseng's picture
Upload 187 files
da855ff
raw
history blame
16.2 kB
import functools
import os
import numpy as np
import blobfile as bf
import torch
from torch.optim import AdamW
from diffusion import logger
from diffusion.fp16_util import MixedPrecisionTrainer
from diffusion.resample import LossAwareSampler, UniformSampler
from tqdm import tqdm
from diffusion.resample import create_named_schedule_sampler
import sys
[sys.path.append(i) for i in ['../process', '../../ubisoft-laforge-ZeroEGGS-main', '../mydiffusion_zeggs']]
from generate.generate import WavEncoder
from process_zeggs_bvh import pose2bvh
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop:
def __init__(self, args, model, diffusion, device, data=None):
self.args = args
self.data = data
self.model = model
self.diffusion = diffusion
self.cond_mode = model.cond_mode
self.batch_size = args.batch_size
self.microbatch = args.batch_size # deprecating this option
self.lr = args.lr
self.log_interval = args.log_interval
# self.save_interval = args.save_interval
# self.resume_checkpoint = args.resume_checkpoint
self.use_fp16 = False # deprecating this option
self.fp16_scale_growth = 1e-3 # deprecating this option
self.weight_decay = args.weight_decay
self.lr_anneal_steps = args.lr_anneal_steps
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size # * dist.get_world_size()
# self.num_steps = args.num_steps
self.num_epochs = 40000
self.n_seed = 8
self.sync_cuda = torch.cuda.is_available()
# self._load_and_sync_parameters()
self.mp_trainer = MixedPrecisionTrainer(
model=self.model,
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
)
self.save_dir = args.save_dir
self.device = device
if args.audio_feat == "wav encoder":
self.WavEncoder = WavEncoder().to(self.device)
self.opt = AdamW([
{'params': self.mp_trainer.master_params, 'lr':self.lr, 'weight_decay':self.weight_decay},
{'params': self.WavEncoder.parameters(), 'lr':self.lr}
])
elif args.audio_feat == "mfcc" or args.audio_feat == 'wavlm':
self.opt = AdamW([
{'params': self.mp_trainer.master_params, 'lr':self.lr, 'weight_decay':self.weight_decay}
])
# if self.resume_step:
# self._load_optimizer_state()
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
self.schedule_sampler_type = 'uniform'
self.schedule_sampler = create_named_schedule_sampler(self.schedule_sampler_type, diffusion)
self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None
# if args.dataset in ['kit', 'humanml'] and args.eval_during_training:
# mm_num_samples = 0 # mm is super slow hence we won't run it during training
# mm_num_repeats = 0 # mm is super slow hence we won't run it during training
# gen_loader = get_dataset_loader(name=args.dataset, batch_size=args.eval_batch_size, num_frames=None,
# split=args.eval_split,
# hml_mode='eval')
#
# self.eval_gt_data = get_dataset_loader(name=args.dataset, batch_size=args.eval_batch_size, num_frames=None,
# split=args.eval_split,
# hml_mode='gt')
# self.eval_wrapper = EvaluatorMDMWrapper(args.dataset, self.device)
# self.eval_data = {
# 'test': lambda: eval_humanml.get_mdm_loader(
# model, diffusion, args.eval_batch_size,
# gen_loader, mm_num_samples, mm_num_repeats, gen_loader.dataset.opt.max_motion_length,
# args.eval_num_samples, scale=1.,
# )
# }
self.use_ddp = False
self.ddp_model = self.model
self.mask_train = (torch.zeros([self.batch_size, 1, 1, args.n_poses]) < 1).to(self.device)
self.mask_test = (torch.zeros([1, 1, 1, args.n_poses]) < 1).to(self.device)
# self.tmp_audio = torch.from_numpy(np.load('tmp_audio.npy')).unsqueeze(0).to(self.device)
# self.tmp_mfcc = torch.from_numpy(np.load('10_kieks_0_9_16.npz')['mfcc'][:args.n_poses]).to(torch.float32).unsqueeze(0).to(self.device)
self.mask_local_train = torch.ones(self.batch_size, args.n_poses).bool().to(self.device)
self.mask_local_test = torch.ones(1, args.n_poses).bool().to(self.device)
# def _load_and_sync_parameters(self):
# resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
#
# if resume_checkpoint:
# self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
# logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
# self.model.load_state_dict(
# dist_util.load_state_dict(
# resume_checkpoint, map_location=self.device
# )
# )
# def _load_optimizer_state(self):
# main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
# opt_checkpoint = bf.join(
# bf.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt"
# )
# if bf.exists(opt_checkpoint):
# logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
# state_dict = dist_util.load_state_dict(
# opt_checkpoint, map_location=self.device
# )
# self.opt.load_state_dict(state_dict)
def run_loop(self):
for epoch in range(self.num_epochs):
# print(f'Starting epoch {epoch}')
# for _ in tqdm(range(10)): # 4 steps, batch size, chmod 777
for batch in tqdm(self.data):
if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
break
cond_ = {'y':{}}
# cond_['y']['text'] = ['A person turns left with medium speed.', 'A human goes slowly about 1.5 meters forward.']
# motion = torch.rand(2, 135, 1, 80).to(self.device)
# pose_seq, _, style, audio, mfcc, wavlm = batch # (batch, 240, 135), (batch, 30), (batch, 64000)
# pose_seq, _, style, _, _, wavlm = batch
pose_seq, style, wavlm = batch
motion = pose_seq.permute(0, 2, 1).unsqueeze(2).to(self.device)
cond_['y']['seed'] = motion[..., 0:self.n_seed]
# motion = motion[..., self.n_seed:]
cond_['y']['style'] = style.to(self.device)
cond_['y']['mask_local'] = self.mask_local_train
if self.args.audio_feat == 'wav encoder':
# cond_['y']['audio'] = torch.rand(240, 2, 32).to(self.device)
cond_['y']['audio'] = self.WavEncoder(audio.to(self.device)).permute(1, 0, 2) # (batch, 240, 32)
elif self.args.audio_feat == 'mfcc':
# cond_['y']['audio'] = torch.rand(80, 2, 13).to(self.device)
cond_['y']['audio'] = mfcc.to(torch.float32).to(self.device).permute(1, 0, 2) # [self.n_seed:, ...] # (batch, 80, 13)
elif self.args.audio_feat == 'wavlm':
cond_['y']['audio'] = wavlm.to(torch.float32).to(self.device)
cond_['y']['mask'] = self.mask_train # [..., self.n_seed:]
self.run_step(motion, cond_)
if self.step % self.log_interval == 0:
for k,v in logger.get_current().name2val.items():
if k == 'loss':
print('step[{}]: loss[{:0.5f}]'.format(self.step+self.resume_step, v))
# if self.step % 10000 == 0:
# sample_fn = self.diffusion.p_sample_loop
#
# model_kwargs_ = {'y': {}}
# model_kwargs_['y']['mask'] = self.mask_test # [..., self.n_seed:]
# model_kwargs_['y']['seed'] = torch.zeros([1, 1141, 1, self.n_seed]).to(self.device)
# model_kwargs_['y']['style'] = torch.zeros([1, 6]).to(self.device)
# model_kwargs_['y']['mask_local'] = self.mask_local_test
# if self.args.audio_feat == 'wav encoder':
# model_kwargs_['y']['audio'] = self.WavEncoder(self.tmp_audio).permute(1, 0, 2)
# # model_kwargs_['y']['audio'] = torch.rand(240, 1, 32).to(self.device)
# elif self.args.audio_feat == 'mfcc':
# model_kwargs_['y']['audio'] = self.tmp_mfcc.permute(1, 0, 2) # [self.n_seed:, ...]
# # model_kwargs_['y']['audio'] = torch.rand(80, 1, 13).to(self.device)
# elif self.args.audio_feat == 'wavlm':
# model_kwargs_['y']['audio'] = torch.randn(1, 1, 1024).to(self.device)
#
# sample = sample_fn(
# self.model,
# (1, 1141, 1, self.args.n_poses), # - self.n_seed
# clip_denoised=False,
# model_kwargs=model_kwargs_,
# skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
# init_image=None,
# progress=True,
# dump_steps=None,
# noise=None,
# const_noise=False,
# ) # (1, 135, 1, 240)
#
# sampled_seq = sample.squeeze(0).permute(1, 2, 0)
# data_mean_ = np.load("../../ubisoft-laforge-ZeroEGGS-main/Data/processed_v1/processed/mean.npz")['mean']
# data_std_ = np.load("../../ubisoft-laforge-ZeroEGGS-main/Data/processed_v1/processed/std.npz")['std']
#
# data_mean = np.array(data_mean_).squeeze()
# data_std = np.array(data_std_).squeeze()
# std = np.clip(data_std, a_min=0.01, a_max=None)
# out_poses = np.multiply(np.array(sampled_seq[0].detach().cpu()), std) + data_mean
#
# pipeline_path = '../../../My/process/resource/data_pipe_20_rotation.sav'
# save_path = 'inference_zeggs_mymodel3_wavlm'
# prefix = str(datetime.now().strftime('%Y%m%d_%H%M%S'))
# if not os.path.exists(save_path):
# os.mkdir(save_path)
# # make_bvh_GENEA2020_BT(save_path, prefix, out_poses, smoothing=False, pipeline_path=pipeline_path)
#
# pose2bvh(out_poses, os.path.join(save_path, prefix + '.bvh'), length=self.args.n_poses)
if self.step % 50000 == 0:
self.save()
# self.model.eval()
# self.evaluate()
# self.model.train()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
if not (not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps):
break
# Save the last checkpoint if it wasn't already saved.
# if (self.step - 1) % 50000 != 0:
# self.save()
# self.evaluate()
def run_step(self, batch, cond):
self.forward_backward(batch, cond) # torch.Size([64, 251, 1, 196]) cond['y'].keys() dict_keys(['mask', 'lengths', 'text', 'tokens'])
self.mp_trainer.optimize(self.opt)
self._anneal_lr()
self.log_step()
def forward_backward(self, batch, cond):
self.mp_trainer.zero_grad()
for i in range(0, batch.shape[0], self.microbatch):
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
micro_cond = cond
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], self.device)
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro, # [bs, ch, image_size, image_size] # x_start, (2, 135, 1, 240)
t, # [bs](int) sampled timesteps
model_kwargs=micro_cond,
dataset='kit'
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
log_loss_dict(
self.diffusion, t, {k: v * weights for k, v in losses.items()}
)
self.mp_trainer.backward(loss)
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
def ckpt_file_name(self):
return f"model{(self.step+self.resume_step):09d}.pt"
def save(self):
def save_checkpoint(params):
state_dict = self.mp_trainer.master_params_to_state_dict(params)
# Do not save CLIP weights
clip_weights = [e for e in state_dict.keys() if e.startswith('clip_model.')]
for e in clip_weights:
del state_dict[e]
logger.log(f"saving model...")
filename = self.ckpt_file_name()
with bf.BlobFile(bf.join(self.save_dir, filename), "wb") as f:
torch.save(state_dict, f)
save_checkpoint(self.mp_trainer.master_params)
with bf.BlobFile(
bf.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"),
"wb",
) as f:
torch.save(self.opt.state_dict(), f)
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)