|
import torch |
|
import torch.nn as nn |
|
|
|
import numpy as np |
|
import numpy as np |
|
import pandas as pd |
|
|
|
import torch.nn.functional as F |
|
|
|
from transformers import PretrainedConfig |
|
import torch.optim as optim |
|
|
|
class BertCustomConfig(PretrainedConfig): |
|
model_type = "bert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30873, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
classifier_dropout=None, |
|
max_length=512, |
|
id2label={"0": "Neutral", "1": "Hawkish", "2": "Dovish"}, |
|
label2id={"positive": 1, "negative": 2, "neutral": 0}, |
|
hyperparams=None, |
|
**kwargs |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.classifier_dropout = classifier_dropout |
|
self.max_length = max_length |
|
self.id2label = id2label |
|
self.label2id = label2id |
|
self.hyperparams = hyperparams |
|
|