File size: 11,382 Bytes
86c5b7a 551643e 7475278 551643e fa0a3e5 551643e b2ea1b4 551643e b2ea1b4 551643e b2ea1b4 551643e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
tags:
- text-to-image
- stable-diffusion
- safetensors
- stable-diffusion-xl
base_model: cagliostrolab/animagine-xl-3.1
widget:
- text: 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck, masterpiece, best quality, very aesthetic, absurdres
parameter:
negative_prompt: nsfw, low quality, worst quality, very displeasing, 3d, watermark, signature, ugly, poorly drawn
example_title: 1girl
- text: 1boy, male focus, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck, masterpiece, best quality, very aesthetic, absurdres
parameter:
negative_prompt: nsfw, low quality, worst quality, very displeasing, 3d, watermark, signature, ugly, poorly drawn
example_title: 1boy
---
<style>
body {
display: flex;
align-items: center;
justify-content: center;
height: 100vh;
margin: 0;
font-family: Arial, sans-serif;
background-color: #f4f4f9;
overflow: auto;
}
.container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
width: 100%;
padding: 20px;
}
.title-container {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
padding: 1em;
border-radius: 10px;
}
.title {
font-size: 3em;
font-family: 'Montserrat', sans-serif;
text-align: center;
font-weight: bold;
}
.title span {
background: -webkit-linear-gradient(45deg, #0077b6, #00b4d8, #90e0ef);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.gallery {
display: grid;
grid-template-columns: repeat(5, 1fr);
gap: 10px;
}
.gallery img {
width: 100%;
height: auto;
margin-top: 0px;
margin-bottom: 0px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
transition: transform 0.3s;
}
.gallery img:hover {
transform: scale(1.05);
}
.note {
font-size: 1em;
opacity: 50%;
text-align: center;
margin-top: 20px;
color: #555;
}
</style>
<div class="container">
<div class="title-container">
<div class="title"><span>Kivotos XL 2.0</span></div>
</div>
<div class="gallery">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-001.png" alt="Image 1">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-002.png" alt="Image 2">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-003.png" alt="Image 3">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-004.png" alt="Image 4">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-005.png" alt="Image 5">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-006.png" alt="Image 6">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-007.png" alt="Image 7">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-008.png" alt="Image 8">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-009.png" alt="Image 9">
<img src="https://huggingface.co/yodayo-ai/kivotos-xl-2.0/resolve/main/samples/sample-010.png" alt="Image 10">
</div>
<div class="note">
Drag and drop each image to <a href="https://huggingface.co/spaces/Linaqruf/pnginfo" target="_blank">this link</a> or use ComfyUI to get the metadata.
</div>
</div>
## Overview
**Kivotos XL 2.0** is the latest version of the [Yodayo Kivotos XL](https://yodayo.com/models/ee3c3839-e723-45f5-9151-18b592bc93b9) series, following the previous iteration, [Kivotos XL 1.0](https://yodayo.com/models/ee3c3839-e723-45f5-9151-18b592bc93b9/?modelversion=bf0091c7-4337-4edb-8c34-160d647d249a). This open-source model is built upon Animagine XL V3, a specialized SDXL model designed for generating high-quality anime-style artwork. Kivotos XL V2.0 has undergone additional fine-tuning and optimization to focus specifically on generating images that accurately represent the visual style and aesthetics of the Blue Archive franchise.
## Model Details
- **Developed by**: [Linaqruf](https://github.com/Linaqruf)
- **Model type**: Diffusion-based text-to-image generative model
- **Model Description**: Kivotos XL V2.0, the latest in the Yodayo Kivotos XL series, is an open-source model built on Animagine XL V3. Fine-tuned for high-quality Blue Archive anime-style art generation.
- **License**: [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)
- **Finetuned from model**: [Animagine XL 3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1)
## Supported Platform
1. Use this model in our platform: [![Open In Spaces](https://img.shields.io/badge/Generate%20in%20Yodayo-141414?style=for-the-badge&logo=)](https://yodayo.com/models/ee3c3839-e723-45f5-9151-18b592bc93b9/?modelversion=f3989e22-5afc-40a1-b435-38eae7760f37)
2. Use it in [`ComfyUI`](https://github.com/comfyanonymous/ComfyUI) or [`Stable Diffusion Webui`](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
3. Use it with 🧨 `diffusers`
## 🧨 Diffusers Installation
First install the required libraries:
```bash
pip install diffusers transformers accelerate safetensors --upgrade
```
Then run image generation with the following example code:
```python
import torch
from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"yodayo-ai/kivotos-xl-2.0",
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False,
variant="fp16"
)
pipe.to('cuda')
prompt = "1girl, kazusa \(blue archive\), blue archive, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=832,
height=1216,
guidance_scale=7,
num_inference_steps=28
).images[0]
image.save("./cat.png")
```
## Usage Guidelines
### Tag Ordering
For optimal results, it's recommended to follow the structured prompt template because we train the model like this:
```
1girl/1boy, character name, from which series, by which artists, everything else in any order.
```
### Special Tags
Kivotos XL 2.0 inherits special tags from Animagine XL 3.1 to enhance image generation by steering results toward quality, rating, creation date, and aesthetic. This inheritance ensures that Kivotos XL 2.0 can produce high-quality, relevant, and aesthetically pleasing images. While the model can generate images without these tags, using them helps achieve better results.
- **Quality tags**: masterpiece, best quality, great quality, good quality, normal quality, low quality, worst quality
- **Rating tags**: safe, sensitive, nsfw, explicit
- **Year tags**: newest, recent, mid, early, oldest
- **Aesthetic tags**: very aesthetic, aesthetic, displeasing, very displeasing
### Recommended Settings
To guide the model towards generating high-aesthetic images, use the following recommended settings:
- **Negative prompts**:
```
nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn
```
- **Positive prompts**:
```
masterpiece, best quality, very aesthetic, absurdres
```
- **Classifier-Free Guidance (CFG) Scale**: should be around 5 to 7; 10 is fried, >12 is deep-fried.
- **Sampling steps**: should be around 25 to 30; 28 is the sweet spot.
- **Sampler**: Euler Ancestral (Euler a) is highly recommended.
- **Supported resolutions**:
```
1024 x 1024, 1152 x 896, 896 x 1152, 1216 x 832, 832 x 1216, 1344 x 768, 768 x 1344, 1536 x 640, 640 x 1536
```
## Training
These are the key hyperparameters used during training:
| Feature | Pretraining | Finetuning |
|-------------------------------|----------------------------|---------------------------------|
| **Hardware** | 2x H100 80GB PCIe | 1x A100 80GB PCIe |
| **Batch Size** | 32 | 48 |
| **Gradient Accumulation Steps** | 2 | 1 |
| **Noise Offset** | None | 0.0357 |
| **Epochs** | 10 | 10 |
| **UNet Learning Rate** | 5e-6 | 3.75e-6 |
| **Text Encoder Learning Rate** | 2.5e-6 | None |
| **Optimizer** | Adafactor | Adafactor |
| **Optimizer Args** | Scale Parameter: False, Relative Step: False, Warmup Init: False (0.9, 0.99) | Scale Parameter: False, Relative Step: False, Warmup Init: False |
| **Scheduler** | Constant with Warmups | Constant with Warmups |
| **Warmup Steps** | 0.05% | 0.05% |
## License
Kivotos XL 2.0 falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points:
1. **Modification Sharing:** If you modify Kivotos XL 2.0, you must share both your changes and the original license.
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules.
|