ymoslem commited on
Commit
dd0d1d7
·
verified ·
1 Parent(s): 191e618

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -8
README.md CHANGED
@@ -16,6 +16,7 @@ datasets:
16
  metrics:
17
  - bleu
18
  - wer
 
19
  model-index:
20
  - name: Whisper Small GA-EN Speech Translation
21
  results:
@@ -23,7 +24,9 @@ model-index:
23
  name: Automatic Speech Recognition
24
  type: automatic-speech-recognition
25
  dataset:
26
- name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented
 
 
27
  type: ymoslem/IWSLT2023-GA-EN
28
  metrics:
29
  - name: Bleu
@@ -32,6 +35,7 @@ model-index:
32
  - name: Wer
33
  type: wer
34
  value: 71.49932462854571
 
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -39,12 +43,15 @@ should probably proofread and complete it, then remove this comment. -->
39
 
40
  # Whisper Small GA-EN Speech Translation
41
 
42
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented dataset.
43
- It achieves the following results on the evaluation set:
44
- - Loss: 1.3512
45
- - Bleu: 30.11
46
- - Chrf: 46.73
47
- - Wer: 71.4993
 
 
 
48
 
49
  ## Model description
50
 
@@ -60,6 +67,10 @@ More information needed
60
 
61
  ## Training procedure
62
 
 
 
 
 
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
@@ -69,8 +80,10 @@ The following hyperparameters were used during training:
69
  - seed: 42
70
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
  - lr_scheduler_type: linear
 
72
  - training_steps: 3000
73
  - mixed_precision_training: Native AMP
 
74
 
75
  ### Training results
76
 
@@ -113,4 +126,4 @@ The following hyperparameters were used during training:
113
  - Transformers 4.40.2
114
  - Pytorch 2.2.0+cu121
115
  - Datasets 2.19.1
116
- - Tokenizers 0.19.1
 
16
  metrics:
17
  - bleu
18
  - wer
19
+ - chrf
20
  model-index:
21
  - name: Whisper Small GA-EN Speech Translation
22
  results:
 
24
  name: Automatic Speech Recognition
25
  type: automatic-speech-recognition
26
  dataset:
27
+ name: >-
28
+ IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia +
29
+ augmented
30
  type: ymoslem/IWSLT2023-GA-EN
31
  metrics:
32
  - name: Bleu
 
35
  - name: Wer
36
  type: wer
37
  value: 71.49932462854571
38
+ library_name: transformers
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  # Whisper Small GA-EN Speech Translation
45
 
46
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small)
47
+ on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia datasets.
48
+ The datasets are augmented in two ways: noise augmentation, and truncating low-amplitude samples.
49
+ The best model checkpoint (this version) based on ChrF is at step 2800, epoch 1.2259, and
50
+ it achieves the following results on the evaluation set:
51
+ - Loss: 1.3547
52
+ - Bleu: 32.57
53
+ - Chrf: 47.04
54
+ - Wer: 62.0891
55
 
56
  ## Model description
57
 
 
67
 
68
  ## Training procedure
69
 
70
+ ### Hardware
71
+
72
+ 1 NVIDIA A100-SXM4-80GB
73
+
74
  ### Training hyperparameters
75
 
76
  The following hyperparameters were used during training:
 
80
  - seed: 42
81
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
82
  - lr_scheduler_type: linear
83
+ - lr_scheduler_warmup_steps: 0
84
  - training_steps: 3000
85
  - mixed_precision_training: Native AMP
86
+ - generation_max_length: 225
87
 
88
  ### Training results
89
 
 
126
  - Transformers 4.40.2
127
  - Pytorch 2.2.0+cu121
128
  - Datasets 2.19.1
129
+ - Tokenizers 0.19.1