File size: 2,165 Bytes
eddbe38
 
2941b03
 
 
 
 
 
 
 
 
 
 
 
 
eddbe38
2941b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: mit
language: en
tags:

- adverse-drug-events
- twitter
- social-media-mining-for-health
- SMM4H

widget:
- text: "ner ade: i'm so irritable when my vyvanse wears off"
  example_title: "ADE"
- text: "ner ade: bout to have a kick ass summer then it's time to get serious fer school #vyvanse #geekmode"
  example_title: "noADE"
---

## t2t-ner-ade-balanced

t2t-ner-ade-balanced is a text-to-text (**t2t**) adverse drug event (**ade**) extraction (NER) model trained with over- and undersampled (balanced) English tweets reporting adverse drug events. It is trained as part of BOUN-TABI system for the Social Media Mining for Health (SMM4H) 2022 shared task. The system description paper has been accepted for publication in *Proceedings of the Seventh Social Media Mining for Health (#SMM4H) Workshop and Shared Task* and will be available soon. The source code has been released on GitHub at [https://github.com/gokceuludogan/boun-tabi-smm4h22](https://github.com/gokceuludogan/boun-tabi-smm4h22).

The model utilizes the T5 model and its text-to-text formulation. The inputs are fed to the model with the task prefix "ner ade:", followed with a sentence/tweet. In turn, either the extracted adverse event span is returned, or "none". 

## Requirements
```
sentencepiece
transformers
```

## Usage

```python
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("yirmibesogluz/t2t-ner-ade-balanced")
model = AutoModelForSeq2SeqLM.from_pretrained("yirmibesogluz/t2t-ner-ade-balanced")
predictor = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
predictor("ner ade: i'm so irritable when my vyvanse wears off")
```

## Citation

```bibtex
@inproceedings{uludogan-gokce-yirmibesoglu-zeynep-2022-boun-tabi-smm4h22,
    title = "{BOUN}-{TABI}@{SMM4H}'22: Text-to-{T}ext {A}dverse {D}rug {E}vent {E}xtraction with {D}ata {B}alancing and {P}rompting",
    author = "Uludo{\u{g}}an, G{\"{o}}k{\c{c}}e  and Yirmibe{\c{s}}o{\u{g}}lu, Zeynep",
    booktitle = "Proceedings of the Seventh Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task",
    year = "2022",
}
```