yinong333 commited on
Commit
000786b
1 Parent(s): 43737ec

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:760
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: Why is it important to establish clear timelines for data retention,
46
+ and what should happen to data once those timelines are reached?
47
+ sentences:
48
+ - "Technology \nDignari \nDouglas Goddard \nEdgar Dworsky \nElectronic Frontier\
49
+ \ Foundation \nElectronic Privacy Information \nCenter, Center for Digital \n\
50
+ Democracy, and Consumer \nFederation of America \nFaceTec \nFight for the Future\
51
+ \ \nGanesh Mani \nGeorgia Tech Research Institute \nGoogle \nHealth Information\
52
+ \ Technology \nResearch and Development \nInteragency Working Group \nHireVue\
53
+ \ \nHR Policy Association \nID.me \nIdentity and Data Sciences \nLaboratory at\
54
+ \ Science Applications \nInternational Corporation \nInformation Technology and\
55
+ \ \nInnovation Foundation \nInformation Technology Industry \nCouncil \nInnocence\
56
+ \ Project \nInstitute for Human-Centered \nArtificial Intelligence at Stanford\
57
+ \ \nUniversity \nIntegrated Justice Information \nSystems Institute \nInternational\
58
+ \ Association of Chiefs \nof Police \nInternational Biometrics + Identity \nAssociation\
59
+ \ \nInternational Business Machines \nCorporation \nInternational Committee of\
60
+ \ the Red \nCross \nInventionphysics \niProov \nJacob Boudreau \nJennifer K. Wagner,\
61
+ \ Dan Berger,"
62
+ - "new privacy risks and implementing appropriate mitigation measures, which may\
63
+ \ include express consent. \nClear timelines for data retention should be established,\
64
+ \ with data deleted as soon as possible in accordance \nwith legal or policy-based\
65
+ \ limitations. Determined data retention timelines should be documented and justi­\n\
66
+ fied. \nRisk identification and mitigation. Entities that collect, use, share,\
67
+ \ or store sensitive data should \nattempt to proactively identify harms and seek\
68
+ \ to manage them so as to avoid, mitigate, and respond appropri­\nately to identified\
69
+ \ risks. Appropriate responses include determining not to process data when the\
70
+ \ privacy risks \noutweigh the benefits or implementing measures to mitigate acceptable\
71
+ \ risks. Appropriate responses do not \ninclude sharing or transferring the privacy\
72
+ \ risks to users via notice or consent requests where users could not \nreasonably\
73
+ \ be expected to understand the risks without further support."
74
+ - '55. Data & Trust Alliance. Algorithmic Bias Safeguards for Workforce: Overview.
75
+ Jan. 2022. https://
76
+
77
+ dataandtrustalliance.org/Algorithmic_Bias_Safeguards_for_Workforce_Overview.pdf
78
+
79
+ 56. Section 508.gov. IT Accessibility Laws and Policies. Access Board. https://www.section508.gov/
80
+
81
+ manage/laws-and-policies/
82
+
83
+ 67'
84
+ - source_sentence: What is the purpose of the NIST AI Risk Management Framework?
85
+ sentences:
86
+ - "TABLE OF CONTENTS\nFROM PRINCIPLES TO PRACTICE: A TECHNICAL COMPANION TO THE\
87
+ \ BLUEPRINT \nFOR AN AI BILL OF RIGHTS \n \nUSING THIS TECHNICAL COMPANION\n \n\
88
+ SAFE AND EFFECTIVE SYSTEMS\n \nALGORITHMIC DISCRIMINATION PROTECTIONS\n \nDATA\
89
+ \ PRIVACY\n \nNOTICE AND EXPLANATION\n \nHUMAN ALTERNATIVES, CONSIDERATION, AND\
90
+ \ FALLBACK\nAPPENDIX\n \nEXAMPLES OF AUTOMATED SYSTEMS\n \nLISTENING TO THE AMERICAN\
91
+ \ PEOPLE\nENDNOTES \n12\n14\n15\n23\n30\n40\n46\n53\n53\n55\n63\n13"
92
+ - "health diagnostic systems. \nThe Blueprint for an AI Bill of Rights recognizes\
93
+ \ that law enforcement activities require a balancing of \nequities, for example,\
94
+ \ between the protection of sensitive law enforcement information and the principle\
95
+ \ of \nnotice; as such, notice may not be appropriate, or may need to be adjusted\
96
+ \ to protect sources, methods, and \nother law enforcement equities. Even in contexts\
97
+ \ where these principles may not apply in whole or in part, \nfederal departments\
98
+ \ and agencies remain subject to judicial, privacy, and civil liberties oversight\
99
+ \ as well as \nexisting policies and safeguards that govern automated systems,\
100
+ \ including, for example, Executive Order 13960, \nPromoting the Use of Trustworthy\
101
+ \ Artificial Intelligence in the Federal Government (December 2020). \nThis white\
102
+ \ paper recognizes that national security (which includes certain law enforcement\
103
+ \ and \nhomeland security activities) and defense activities are of increased\
104
+ \ sensitivity and interest to our nation’s"
105
+ - "mitigate risks posed by the use of AI to companies’ reputation, legal responsibilities,\
106
+ \ and other product safety \nand effectiveness concerns. \nThe Office of Management\
107
+ \ and Budget (OMB) has called for an expansion of opportunities \nfor meaningful\
108
+ \ stakeholder engagement in the design of programs and services. OMB also \npoints\
109
+ \ to numerous examples of effective and proactive stakeholder engagement, including\
110
+ \ the Community-\nBased Participatory Research Program developed by the National\
111
+ \ Institutes of Health and the participatory \ntechnology assessments developed\
112
+ \ by the National Oceanic and Atmospheric Administration.18\nThe National Institute\
113
+ \ of Standards and Technology (NIST) is developing a risk \nmanagement framework\
114
+ \ to better manage risks posed to individuals, organizations, and \nsociety by\
115
+ \ AI.19 The NIST AI Risk Management Framework, as mandated by Congress, is intended\
116
+ \ for \nvoluntary use to help incorporate trustworthiness considerations into\
117
+ \ the design, development, use, and"
118
+ - source_sentence: What were the main topics discussed in the panel focused on consumer
119
+ rights and protections in an automated society?
120
+ sentences:
121
+ - "context, or may be more speculative and therefore uncertain. \nAI risks can differ\
122
+ \ from or intensify traditional software risks. Likewise, GAI can exacerbate existing\
123
+ \ AI \nrisks, and creates unique risks. GAI risks can vary along many dimensions:\
124
+ \ \n• \nStage of the AI lifecycle: Risks can arise during design, development,\
125
+ \ deployment, operation, \nand/or decommissioning. \n• \nScope: Risks may exist\
126
+ \ at individual model or system levels, at the application or implementation \n\
127
+ levels (i.e., for a specific use case), or at the ecosystem level – that is, beyond\
128
+ \ a single system or \norganizational context. Examples of the latter include\
129
+ \ the expansion of “algorithmic \nmonocultures,3” resulting from repeated use\
130
+ \ of the same model, or impacts on access to \nopportunity, labor markets, and\
131
+ \ the creative economies.4 \n• \nSource of risk: Risks may emerge from factors\
132
+ \ related to the design, training, or operation of the"
133
+ - "specific and empirically well-substantiated negative risk to public safety (or\
134
+ \ has \nalready caused harm). \nCBRN Information or Capabilities; \nDangerous,\
135
+ \ Violent, or Hateful \nContent \nAI Actor Tasks: Governance and Oversight"
136
+ - "theme, exploring current challenges and concerns and considering what an automated\
137
+ \ society that \nrespects democratic values should look like. These discussions\
138
+ \ focused on the topics of consumer \nrights and protections, the criminal justice\
139
+ \ system, equal opportunities and civil justice, artificial \nintelligence and\
140
+ \ democratic values, social welfare and development, and the healthcare system.\
141
+ \ \nSummaries of Panel Discussions: \nPanel 1: Consumer Rights and Protections.\
142
+ \ This event explored the opportunities and challenges for \nindividual consumers\
143
+ \ and communities in the context of a growing ecosystem of AI-enabled consumer\
144
+ \ \nproducts, advanced platforms and services, “Internet of Things” (IoT) devices,\
145
+ \ and smart city products and \nservices. \nWelcome:\n•\nRashida Richardson, Senior\
146
+ \ Policy Advisor for Data and Democracy, White House Office of Science and\nTechnology\
147
+ \ Policy\n•\nKaren Kornbluh, Senior Fellow and Director of the Digital Innovation\
148
+ \ and Democracy Initiative, German\nMarshall Fund"
149
+ - source_sentence: How did the input from various stakeholders contribute to the development
150
+ of the Blueprint for an AI Bill of Rights?
151
+ sentences:
152
+ - "SECTION TITLE\nAPPENDIX\nListening to the American People \nThe White House Office\
153
+ \ of Science and Technology Policy (OSTP) led a yearlong process to seek and distill\
154
+ \ \ninput from people across the country – from impacted communities to industry\
155
+ \ stakeholders to \ntechnology developers to other experts across fields and sectors,\
156
+ \ as well as policymakers across the Federal \ngovernment – on the issue of algorithmic\
157
+ \ and data-driven harms and potential remedies. Through panel \ndiscussions, public\
158
+ \ listening sessions, private meetings, a formal request for information, and\
159
+ \ input to a \npublicly accessible and widely-publicized email address, people\
160
+ \ across the United States spoke up about \nboth the promises and potential harms\
161
+ \ of these technologies, and played a central role in shaping the \nBlueprint\
162
+ \ for an AI Bill of Rights. \nPanel Discussions to Inform the Blueprint for An\
163
+ \ AI Bill of Rights"
164
+ - "About this Document \nThe Blueprint for an AI Bill of Rights: Making Automated\
165
+ \ Systems Work for the American People was \npublished by the White House Office\
166
+ \ of Science and Technology Policy in October 2022. This framework was \nreleased\
167
+ \ one year after OSTP announced the launch of a process to develop “a bill of\
168
+ \ rights for an AI-powered \nworld.” Its release follows a year of public engagement\
169
+ \ to inform this initiative. The framework is available \nonline at: https://www.whitehouse.gov/ostp/ai-bill-of-rights\
170
+ \ \nAbout the Office of Science and Technology Policy \nThe Office of Science\
171
+ \ and Technology Policy (OSTP) was established by the National Science and Technology\
172
+ \ \nPolicy, Organization, and Priorities Act of 1976 to provide the President\
173
+ \ and others within the Executive Office \nof the President with advice on the\
174
+ \ scientific, engineering, and technological aspects of the economy, national"
175
+ - "Technology Policy\n•\nKaren Kornbluh, Senior Fellow and Director of the Digital\
176
+ \ Innovation and Democracy Initiative, German\nMarshall Fund\nModerator: \nDevin\
177
+ \ E. Willis, Attorney, Division of Privacy and Identity Protection, Bureau of\
178
+ \ Consumer Protection, Federal \nTrade Commission \nPanelists: \n•\nTamika L.\
179
+ \ Butler, Principal, Tamika L. Butler Consulting\n•\nJennifer Clark, Professor\
180
+ \ and Head of City and Regional Planning, Knowlton School of Engineering, Ohio\n\
181
+ State University\n•\nCarl Holshouser, Senior Vice President for Operations and\
182
+ \ Strategic Initiatives, TechNet\n•\nSurya Mattu, Senior Data Engineer and Investigative\
183
+ \ Data Journalist, The Markup\n•\nMariah Montgomery, National Campaign Director,\
184
+ \ Partnership for Working Families\n55"
185
+ - source_sentence: What legal action did the Federal Trade Commission take against
186
+ Kochava regarding data tracking?
187
+ sentences:
188
+ - "DATA PRIVACY \nEXTRA PROTECTIONS FOR DATA RELATED TO SENSITIVE\nDOMAINS\n•\n\
189
+ Continuous positive airway pressure machines gather data for medical purposes,\
190
+ \ such as diagnosing sleep\napnea, and send usage data to a patient’s insurance\
191
+ \ company, which may subsequently deny coverage for the\ndevice based on usage\
192
+ \ data. Patients were not aware that the data would be used in this way or monitored\n\
193
+ by anyone other than their doctor.70 \n•\nA department store company used predictive\
194
+ \ analytics applied to collected consumer data to determine that a\nteenage girl\
195
+ \ was pregnant, and sent maternity clothing ads and other baby-related advertisements\
196
+ \ to her\nhouse, revealing to her father that she was pregnant.71\n•\nSchool audio\
197
+ \ surveillance systems monitor student conversations to detect potential \"stress\
198
+ \ indicators\" as\na warning of potential violence.72 Online proctoring systems\
199
+ \ claim to detect if a student is cheating on an"
200
+ - 'ENDNOTES
201
+
202
+ 75. See., e.g., Sam Sabin. Digital surveillance in a post-Roe world. Politico.
203
+ May 5, 2022. https://
204
+
205
+ www.politico.com/newsletters/digital-future-daily/2022/05/05/digital-surveillance-in-a-post-roe­
206
+
207
+ world-00030459; Federal Trade Commission. FTC Sues Kochava for Selling Data that
208
+ Tracks People at
209
+
210
+ Reproductive Health Clinics, Places of Worship, and Other Sensitive Locations.
211
+ Aug. 29, 2022. https://
212
+
213
+ www.ftc.gov/news-events/news/press-releases/2022/08/ftc-sues-kochava-selling-data-tracks-people­
214
+
215
+ reproductive-health-clinics-places-worship-other
216
+
217
+ 76. Todd Feathers. This Private Equity Firm Is Amassing Companies That Collect
218
+ Data on America’s
219
+
220
+ Children. The Markup. Jan. 11, 2022.
221
+
222
+ https://themarkup.org/machine-learning/2022/01/11/this-private-equity-firm-is-amassing-companies­
223
+
224
+ that-collect-data-on-americas-children
225
+
226
+ 77. Reed Albergotti. Every employee who leaves Apple becomes an ‘associate’: In
227
+ job databases used by'
228
+ - 'ENDNOTES
229
+
230
+ 1.The Executive Order On Advancing Racial Equity and Support for Underserved Communities
231
+ Through the
232
+
233
+ Federal Government. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive
234
+
235
+ order-advancing-racial-equity-and-support-for-underserved-communities-through-the-federal-government/
236
+
237
+ 2. The White House. Remarks by President Biden on the Supreme Court Decision to
238
+ Overturn Roe v. Wade. Jun.
239
+
240
+ 24, 2022. https://www.whitehouse.gov/briefing-room/speeches-remarks/2022/06/24/remarks-by-president­
241
+
242
+ biden-on-the-supreme-court-decision-to-overturn-roe-v-wade/
243
+
244
+ 3. The White House. Join the Effort to Create A Bill of Rights for an Automated
245
+ Society. Nov. 10, 2021. https://
246
+
247
+ www.whitehouse.gov/ostp/news-updates/2021/11/10/join-the-effort-to-create-a-bill-of-rights-for-an­
248
+
249
+ automated-society/
250
+
251
+ 4. U.S. Dept. of Health, Educ. & Welfare, Report of the Sec’y’s Advisory Comm.
252
+ on Automated Pers. Data Sys.,'
253
+ model-index:
254
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
255
+ results:
256
+ - task:
257
+ type: information-retrieval
258
+ name: Information Retrieval
259
+ dataset:
260
+ name: Unknown
261
+ type: unknown
262
+ metrics:
263
+ - type: cosine_accuracy@1
264
+ value: 0.7214285714285714
265
+ name: Cosine Accuracy@1
266
+ - type: cosine_accuracy@3
267
+ value: 0.8785714285714286
268
+ name: Cosine Accuracy@3
269
+ - type: cosine_accuracy@5
270
+ value: 0.95
271
+ name: Cosine Accuracy@5
272
+ - type: cosine_accuracy@10
273
+ value: 0.9714285714285714
274
+ name: Cosine Accuracy@10
275
+ - type: cosine_precision@1
276
+ value: 0.7214285714285714
277
+ name: Cosine Precision@1
278
+ - type: cosine_precision@3
279
+ value: 0.2928571428571428
280
+ name: Cosine Precision@3
281
+ - type: cosine_precision@5
282
+ value: 0.18999999999999995
283
+ name: Cosine Precision@5
284
+ - type: cosine_precision@10
285
+ value: 0.09714285714285713
286
+ name: Cosine Precision@10
287
+ - type: cosine_recall@1
288
+ value: 0.7214285714285714
289
+ name: Cosine Recall@1
290
+ - type: cosine_recall@3
291
+ value: 0.8785714285714286
292
+ name: Cosine Recall@3
293
+ - type: cosine_recall@5
294
+ value: 0.95
295
+ name: Cosine Recall@5
296
+ - type: cosine_recall@10
297
+ value: 0.9714285714285714
298
+ name: Cosine Recall@10
299
+ - type: cosine_ndcg@10
300
+ value: 0.8514639427234363
301
+ name: Cosine Ndcg@10
302
+ - type: cosine_mrr@10
303
+ value: 0.8122108843537416
304
+ name: Cosine Mrr@10
305
+ - type: cosine_map@100
306
+ value: 0.8142292826221397
307
+ name: Cosine Map@100
308
+ - type: dot_accuracy@1
309
+ value: 0.7214285714285714
310
+ name: Dot Accuracy@1
311
+ - type: dot_accuracy@3
312
+ value: 0.8785714285714286
313
+ name: Dot Accuracy@3
314
+ - type: dot_accuracy@5
315
+ value: 0.95
316
+ name: Dot Accuracy@5
317
+ - type: dot_accuracy@10
318
+ value: 0.9714285714285714
319
+ name: Dot Accuracy@10
320
+ - type: dot_precision@1
321
+ value: 0.7214285714285714
322
+ name: Dot Precision@1
323
+ - type: dot_precision@3
324
+ value: 0.2928571428571428
325
+ name: Dot Precision@3
326
+ - type: dot_precision@5
327
+ value: 0.18999999999999995
328
+ name: Dot Precision@5
329
+ - type: dot_precision@10
330
+ value: 0.09714285714285713
331
+ name: Dot Precision@10
332
+ - type: dot_recall@1
333
+ value: 0.7214285714285714
334
+ name: Dot Recall@1
335
+ - type: dot_recall@3
336
+ value: 0.8785714285714286
337
+ name: Dot Recall@3
338
+ - type: dot_recall@5
339
+ value: 0.95
340
+ name: Dot Recall@5
341
+ - type: dot_recall@10
342
+ value: 0.9714285714285714
343
+ name: Dot Recall@10
344
+ - type: dot_ndcg@10
345
+ value: 0.8514639427234363
346
+ name: Dot Ndcg@10
347
+ - type: dot_mrr@10
348
+ value: 0.8122108843537416
349
+ name: Dot Mrr@10
350
+ - type: dot_map@100
351
+ value: 0.8142292826221397
352
+ name: Dot Map@100
353
+ ---
354
+
355
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
356
+
357
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
358
+
359
+ ## Model Details
360
+
361
+ ### Model Description
362
+ - **Model Type:** Sentence Transformer
363
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
364
+ - **Maximum Sequence Length:** 256 tokens
365
+ - **Output Dimensionality:** 384 tokens
366
+ - **Similarity Function:** Cosine Similarity
367
+ <!-- - **Training Dataset:** Unknown -->
368
+ <!-- - **Language:** Unknown -->
369
+ <!-- - **License:** Unknown -->
370
+
371
+ ### Model Sources
372
+
373
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
374
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
375
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
376
+
377
+ ### Full Model Architecture
378
+
379
+ ```
380
+ SentenceTransformer(
381
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
382
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
383
+ (2): Normalize()
384
+ )
385
+ ```
386
+
387
+ ## Usage
388
+
389
+ ### Direct Usage (Sentence Transformers)
390
+
391
+ First install the Sentence Transformers library:
392
+
393
+ ```bash
394
+ pip install -U sentence-transformers
395
+ ```
396
+
397
+ Then you can load this model and run inference.
398
+ ```python
399
+ from sentence_transformers import SentenceTransformer
400
+
401
+ # Download from the 🤗 Hub
402
+ model = SentenceTransformer("yinong333/finetuned_MiniLM")
403
+ # Run inference
404
+ sentences = [
405
+ 'What legal action did the Federal Trade Commission take against Kochava regarding data tracking?',
406
+ 'ENDNOTES\n75. See., e.g., Sam Sabin. Digital surveillance in a post-Roe world. Politico. May 5, 2022. https://\nwww.politico.com/newsletters/digital-future-daily/2022/05/05/digital-surveillance-in-a-post-roe\xad\nworld-00030459; Federal Trade Commission. FTC Sues Kochava for Selling Data that Tracks People at\nReproductive Health Clinics, Places of Worship, and Other Sensitive Locations. Aug. 29, 2022. https://\nwww.ftc.gov/news-events/news/press-releases/2022/08/ftc-sues-kochava-selling-data-tracks-people\xad\nreproductive-health-clinics-places-worship-other\n76. Todd Feathers. This Private Equity Firm Is Amassing Companies That Collect Data on America’s\nChildren. The Markup. Jan. 11, 2022.\nhttps://themarkup.org/machine-learning/2022/01/11/this-private-equity-firm-is-amassing-companies\xad\nthat-collect-data-on-americas-children\n77. Reed Albergotti. Every employee who leaves Apple becomes an ‘associate’: In job databases used by',
407
+ 'DATA PRIVACY \nEXTRA PROTECTIONS FOR DATA RELATED TO SENSITIVE\nDOMAINS\n•\nContinuous positive airway pressure machines gather data for medical purposes, such as diagnosing sleep\napnea, and send usage data to a patient’s insurance company, which may subsequently deny coverage for the\ndevice based on usage data. Patients were not aware that the data would be used in this way or monitored\nby anyone other than their doctor.70 \n•\nA department store company used predictive analytics applied to collected consumer data to determine that a\nteenage girl was pregnant, and sent maternity clothing ads and other baby-related advertisements to her\nhouse, revealing to her father that she was pregnant.71\n•\nSchool audio surveillance systems monitor student conversations to detect potential "stress indicators" as\na warning of potential violence.72 Online proctoring systems claim to detect if a student is cheating on an',
408
+ ]
409
+ embeddings = model.encode(sentences)
410
+ print(embeddings.shape)
411
+ # [3, 384]
412
+
413
+ # Get the similarity scores for the embeddings
414
+ similarities = model.similarity(embeddings, embeddings)
415
+ print(similarities.shape)
416
+ # [3, 3]
417
+ ```
418
+
419
+ <!--
420
+ ### Direct Usage (Transformers)
421
+
422
+ <details><summary>Click to see the direct usage in Transformers</summary>
423
+
424
+ </details>
425
+ -->
426
+
427
+ <!--
428
+ ### Downstream Usage (Sentence Transformers)
429
+
430
+ You can finetune this model on your own dataset.
431
+
432
+ <details><summary>Click to expand</summary>
433
+
434
+ </details>
435
+ -->
436
+
437
+ <!--
438
+ ### Out-of-Scope Use
439
+
440
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
441
+ -->
442
+
443
+ ## Evaluation
444
+
445
+ ### Metrics
446
+
447
+ #### Information Retrieval
448
+
449
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
450
+
451
+ | Metric | Value |
452
+ |:--------------------|:-----------|
453
+ | cosine_accuracy@1 | 0.7214 |
454
+ | cosine_accuracy@3 | 0.8786 |
455
+ | cosine_accuracy@5 | 0.95 |
456
+ | cosine_accuracy@10 | 0.9714 |
457
+ | cosine_precision@1 | 0.7214 |
458
+ | cosine_precision@3 | 0.2929 |
459
+ | cosine_precision@5 | 0.19 |
460
+ | cosine_precision@10 | 0.0971 |
461
+ | cosine_recall@1 | 0.7214 |
462
+ | cosine_recall@3 | 0.8786 |
463
+ | cosine_recall@5 | 0.95 |
464
+ | cosine_recall@10 | 0.9714 |
465
+ | cosine_ndcg@10 | 0.8515 |
466
+ | cosine_mrr@10 | 0.8122 |
467
+ | **cosine_map@100** | **0.8142** |
468
+ | dot_accuracy@1 | 0.7214 |
469
+ | dot_accuracy@3 | 0.8786 |
470
+ | dot_accuracy@5 | 0.95 |
471
+ | dot_accuracy@10 | 0.9714 |
472
+ | dot_precision@1 | 0.7214 |
473
+ | dot_precision@3 | 0.2929 |
474
+ | dot_precision@5 | 0.19 |
475
+ | dot_precision@10 | 0.0971 |
476
+ | dot_recall@1 | 0.7214 |
477
+ | dot_recall@3 | 0.8786 |
478
+ | dot_recall@5 | 0.95 |
479
+ | dot_recall@10 | 0.9714 |
480
+ | dot_ndcg@10 | 0.8515 |
481
+ | dot_mrr@10 | 0.8122 |
482
+ | dot_map@100 | 0.8142 |
483
+
484
+ <!--
485
+ ## Bias, Risks and Limitations
486
+
487
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
488
+ -->
489
+
490
+ <!--
491
+ ### Recommendations
492
+
493
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
494
+ -->
495
+
496
+ ## Training Details
497
+
498
+ ### Training Dataset
499
+
500
+ #### Unnamed Dataset
501
+
502
+
503
+ * Size: 760 training samples
504
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
505
+ * Approximate statistics based on the first 760 samples:
506
+ | | sentence_0 | sentence_1 |
507
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
508
+ | type | string | string |
509
+ | details | <ul><li>min: 11 tokens</li><li>mean: 20.96 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 167.91 tokens</li><li>max: 256 tokens</li></ul> |
510
+ * Samples:
511
+ | sentence_0 | sentence_1 |
512
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
513
+ | <code>What is the purpose of the AI Bill of Rights mentioned in the context?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
514
+ | <code>When was the Blueprint for an AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
515
+ | <code>What was the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology <br>Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office <br>of the President with advice on the scientific, engineering, and technological aspects of the economy, national</code> |
516
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
517
+ ```json
518
+ {
519
+ "loss": "MultipleNegativesRankingLoss",
520
+ "matryoshka_dims": [
521
+ 384,
522
+ 128
523
+ ],
524
+ "matryoshka_weights": [
525
+ 1,
526
+ 1
527
+ ],
528
+ "n_dims_per_step": -1
529
+ }
530
+ ```
531
+
532
+ ### Training Hyperparameters
533
+ #### Non-Default Hyperparameters
534
+
535
+ - `eval_strategy`: steps
536
+ - `per_device_train_batch_size`: 30
537
+ - `per_device_eval_batch_size`: 30
538
+ - `num_train_epochs`: 5
539
+ - `multi_dataset_batch_sampler`: round_robin
540
+
541
+ #### All Hyperparameters
542
+ <details><summary>Click to expand</summary>
543
+
544
+ - `overwrite_output_dir`: False
545
+ - `do_predict`: False
546
+ - `eval_strategy`: steps
547
+ - `prediction_loss_only`: True
548
+ - `per_device_train_batch_size`: 30
549
+ - `per_device_eval_batch_size`: 30
550
+ - `per_gpu_train_batch_size`: None
551
+ - `per_gpu_eval_batch_size`: None
552
+ - `gradient_accumulation_steps`: 1
553
+ - `eval_accumulation_steps`: None
554
+ - `torch_empty_cache_steps`: None
555
+ - `learning_rate`: 5e-05
556
+ - `weight_decay`: 0.0
557
+ - `adam_beta1`: 0.9
558
+ - `adam_beta2`: 0.999
559
+ - `adam_epsilon`: 1e-08
560
+ - `max_grad_norm`: 1
561
+ - `num_train_epochs`: 5
562
+ - `max_steps`: -1
563
+ - `lr_scheduler_type`: linear
564
+ - `lr_scheduler_kwargs`: {}
565
+ - `warmup_ratio`: 0.0
566
+ - `warmup_steps`: 0
567
+ - `log_level`: passive
568
+ - `log_level_replica`: warning
569
+ - `log_on_each_node`: True
570
+ - `logging_nan_inf_filter`: True
571
+ - `save_safetensors`: True
572
+ - `save_on_each_node`: False
573
+ - `save_only_model`: False
574
+ - `restore_callback_states_from_checkpoint`: False
575
+ - `no_cuda`: False
576
+ - `use_cpu`: False
577
+ - `use_mps_device`: False
578
+ - `seed`: 42
579
+ - `data_seed`: None
580
+ - `jit_mode_eval`: False
581
+ - `use_ipex`: False
582
+ - `bf16`: False
583
+ - `fp16`: False
584
+ - `fp16_opt_level`: O1
585
+ - `half_precision_backend`: auto
586
+ - `bf16_full_eval`: False
587
+ - `fp16_full_eval`: False
588
+ - `tf32`: None
589
+ - `local_rank`: 0
590
+ - `ddp_backend`: None
591
+ - `tpu_num_cores`: None
592
+ - `tpu_metrics_debug`: False
593
+ - `debug`: []
594
+ - `dataloader_drop_last`: False
595
+ - `dataloader_num_workers`: 0
596
+ - `dataloader_prefetch_factor`: None
597
+ - `past_index`: -1
598
+ - `disable_tqdm`: False
599
+ - `remove_unused_columns`: True
600
+ - `label_names`: None
601
+ - `load_best_model_at_end`: False
602
+ - `ignore_data_skip`: False
603
+ - `fsdp`: []
604
+ - `fsdp_min_num_params`: 0
605
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
606
+ - `fsdp_transformer_layer_cls_to_wrap`: None
607
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
608
+ - `deepspeed`: None
609
+ - `label_smoothing_factor`: 0.0
610
+ - `optim`: adamw_torch
611
+ - `optim_args`: None
612
+ - `adafactor`: False
613
+ - `group_by_length`: False
614
+ - `length_column_name`: length
615
+ - `ddp_find_unused_parameters`: None
616
+ - `ddp_bucket_cap_mb`: None
617
+ - `ddp_broadcast_buffers`: False
618
+ - `dataloader_pin_memory`: True
619
+ - `dataloader_persistent_workers`: False
620
+ - `skip_memory_metrics`: True
621
+ - `use_legacy_prediction_loop`: False
622
+ - `push_to_hub`: False
623
+ - `resume_from_checkpoint`: None
624
+ - `hub_model_id`: None
625
+ - `hub_strategy`: every_save
626
+ - `hub_private_repo`: False
627
+ - `hub_always_push`: False
628
+ - `gradient_checkpointing`: False
629
+ - `gradient_checkpointing_kwargs`: None
630
+ - `include_inputs_for_metrics`: False
631
+ - `eval_do_concat_batches`: True
632
+ - `fp16_backend`: auto
633
+ - `push_to_hub_model_id`: None
634
+ - `push_to_hub_organization`: None
635
+ - `mp_parameters`:
636
+ - `auto_find_batch_size`: False
637
+ - `full_determinism`: False
638
+ - `torchdynamo`: None
639
+ - `ray_scope`: last
640
+ - `ddp_timeout`: 1800
641
+ - `torch_compile`: False
642
+ - `torch_compile_backend`: None
643
+ - `torch_compile_mode`: None
644
+ - `dispatch_batches`: None
645
+ - `split_batches`: None
646
+ - `include_tokens_per_second`: False
647
+ - `include_num_input_tokens_seen`: False
648
+ - `neftune_noise_alpha`: None
649
+ - `optim_target_modules`: None
650
+ - `batch_eval_metrics`: False
651
+ - `eval_on_start`: False
652
+ - `eval_use_gather_object`: False
653
+ - `batch_sampler`: batch_sampler
654
+ - `multi_dataset_batch_sampler`: round_robin
655
+
656
+ </details>
657
+
658
+ ### Training Logs
659
+ | Epoch | Step | cosine_map@100 |
660
+ |:------:|:----:|:--------------:|
661
+ | 1.0 | 26 | 0.7610 |
662
+ | 1.9231 | 50 | 0.8047 |
663
+ | 2.0 | 52 | 0.8051 |
664
+ | 3.0 | 78 | 0.8116 |
665
+ | 3.8462 | 100 | 0.8142 |
666
+
667
+
668
+ ### Framework Versions
669
+ - Python: 3.10.12
670
+ - Sentence Transformers: 3.1.1
671
+ - Transformers: 4.44.2
672
+ - PyTorch: 2.4.1+cu121
673
+ - Accelerate: 0.34.2
674
+ - Datasets: 2.19.2
675
+ - Tokenizers: 0.19.1
676
+
677
+ ## Citation
678
+
679
+ ### BibTeX
680
+
681
+ #### Sentence Transformers
682
+ ```bibtex
683
+ @inproceedings{reimers-2019-sentence-bert,
684
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
685
+ author = "Reimers, Nils and Gurevych, Iryna",
686
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
687
+ month = "11",
688
+ year = "2019",
689
+ publisher = "Association for Computational Linguistics",
690
+ url = "https://arxiv.org/abs/1908.10084",
691
+ }
692
+ ```
693
+
694
+ #### MatryoshkaLoss
695
+ ```bibtex
696
+ @misc{kusupati2024matryoshka,
697
+ title={Matryoshka Representation Learning},
698
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
699
+ year={2024},
700
+ eprint={2205.13147},
701
+ archivePrefix={arXiv},
702
+ primaryClass={cs.LG}
703
+ }
704
+ ```
705
+
706
+ #### MultipleNegativesRankingLoss
707
+ ```bibtex
708
+ @misc{henderson2017efficient,
709
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
710
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
711
+ year={2017},
712
+ eprint={1705.00652},
713
+ archivePrefix={arXiv},
714
+ primaryClass={cs.CL}
715
+ }
716
+ ```
717
+
718
+ <!--
719
+ ## Glossary
720
+
721
+ *Clearly define terms in order to be accessible across audiences.*
722
+ -->
723
+
724
+ <!--
725
+ ## Model Card Authors
726
+
727
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
728
+ -->
729
+
730
+ <!--
731
+ ## Model Card Contact
732
+
733
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
734
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_MiniLM",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e37dfe180f32865e670d3001f249f96fd79eccfb7a58ece06aa9e4cff6ef27d
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff