update model
Browse files- 20_feb_best_model_deployment.pth +3 -0
- image_app.py +121 -0
- images/pipe1.jpg +0 -0
- images/pipe2.jpg +0 -0
- images/pipe3.jpg +0 -0
- images/pipe4.jpg +0 -0
- output_images/output_pipe4.jpg +0 -0
- output_pipe4.jpg +0 -0
- requirements.txt +7 -0
20_feb_best_model_deployment.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a150be068d26551c5215c32f6a06ad15e539123be3e6099b30207777445ab2a
|
3 |
+
size 106778322
|
image_app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Modify the plotting section to:
|
9 |
+
import matplotlib
|
10 |
+
matplotlib.use('Agg') # Set non-interactive backend
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
# First define or import RetinaNet class
|
14 |
+
# RetinaNet implementation:
|
15 |
+
class RetinaNet(torch.nn.Module):
|
16 |
+
def __init__(self):
|
17 |
+
super(RetinaNet, self).__init__()
|
18 |
+
# Add your model architecture here
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
# Add forward pass
|
22 |
+
return x
|
23 |
+
# Add RetinaNet to safe globals before loading
|
24 |
+
torch.serialization.add_safe_globals([RetinaNet])
|
25 |
+
PATH = './20_feb_best_model_deployment.pth'
|
26 |
+
# Load model with proper safety measures
|
27 |
+
try:
|
28 |
+
model = torch.load(PATH,
|
29 |
+
map_location=torch.device("cpu"),
|
30 |
+
weights_only=False)
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error loading model: {e}")
|
33 |
+
exit()
|
34 |
+
|
35 |
+
# Preprocessing function
|
36 |
+
def preprocess_frame(frame):
|
37 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
38 |
+
resized_frame = cv2.resize(rgb_frame, (224, 224))
|
39 |
+
normalized_frame = resized_frame / 255.0
|
40 |
+
return np.expand_dims(normalized_frame, axis=0)
|
41 |
+
|
42 |
+
# Loop through images in the folder
|
43 |
+
for img_name in os.listdir('./images'):
|
44 |
+
print(f"Processing image: {img_name}")
|
45 |
+
|
46 |
+
# Load and preprocess the image
|
47 |
+
# Define device
|
48 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
|
50 |
+
# Load image from correct path
|
51 |
+
img_path = os.path.join('./images', img_name)
|
52 |
+
img = Image.open(img_path)
|
53 |
+
|
54 |
+
# Define transformation: resize and convert to tensor
|
55 |
+
transform = transforms.Compose([
|
56 |
+
transforms.Resize((224, 224)),
|
57 |
+
transforms.ToTensor()
|
58 |
+
])
|
59 |
+
|
60 |
+
# Apply transformation to loaded image
|
61 |
+
new_image = transform(img)
|
62 |
+
# Add batch dimension
|
63 |
+
new_image_batch = new_image.unsqueeze(0)
|
64 |
+
|
65 |
+
print(new_image_batch.shape) # Should output: torch.Size([1, 3, 224, 224])
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
# Predict using the best model
|
70 |
+
model.eval()
|
71 |
+
with torch.no_grad():
|
72 |
+
# Convert tensor to correct format for model
|
73 |
+
new_image_batch = new_image_batch.permute(0, 3, 1, 2)
|
74 |
+
prediction = model(new_image_batch.to(device).float())
|
75 |
+
|
76 |
+
# print("Prediction:", abs(prediction))
|
77 |
+
|
78 |
+
# Interpret the prediction
|
79 |
+
# if prediction[0][0] > 0.5:
|
80 |
+
# sum_value=torch.sum(abs(prediction[0]))
|
81 |
+
# # print("Sum Value:", sum_value)
|
82 |
+
# p_true=abs(prediction[0][0])
|
83 |
+
# print("p_true:",p_true)
|
84 |
+
# p_false=abs(prediction[0][1])
|
85 |
+
# print("p_false:",p_false)
|
86 |
+
# Interpret the prediction
|
87 |
+
if prediction.shape[1] == 2: # If binary classification output
|
88 |
+
# Convert to probabilities using softmax
|
89 |
+
probabilities = torch.nn.functional.softmax(prediction, dim=1)
|
90 |
+
p_accept = probabilities[0][0].item() * 100 # Convert to percentage
|
91 |
+
p_reject = probabilities[0][1].item() * 100
|
92 |
+
else: # If using regression/other output
|
93 |
+
# Take mean of the output channels
|
94 |
+
p_accept = abs(prediction[0][0]).mean().item() * 100
|
95 |
+
p_reject = abs(prediction[0][1]).mean().item() * 100
|
96 |
+
|
97 |
+
print(f"Accept probability: {p_accept:.2f}%")
|
98 |
+
print(f"Reject probability: {p_reject:.2f}%")
|
99 |
+
|
100 |
+
# Threshold for classification (now using percentage values)
|
101 |
+
if p_accept > 35: # 40% threshold
|
102 |
+
result = "Acceptable"
|
103 |
+
else:
|
104 |
+
result = "Rejectable"
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# Threshold for classification (may need adjustment based on model training)
|
109 |
+
if p_accept > 0.42: # Consider making this a configurable parameter
|
110 |
+
result = "Acceptable"
|
111 |
+
else:
|
112 |
+
result = "Rejectable"
|
113 |
+
print(f"Predicted: {result}")
|
114 |
+
|
115 |
+
# Then in your loop:
|
116 |
+
fig = plt.figure()
|
117 |
+
plt.imshow(new_image.permute(1, 2, 0))
|
118 |
+
plt.title(f"Prediction: {result} ({p_accept:.1f}% vs {p_reject:.1f}%)")
|
119 |
+
plt.axis('off')
|
120 |
+
plt.savefig(f'./output_images/output_{img_name}') # Save instead of show
|
121 |
+
plt.close(fig) # Important for memory management
|
images/pipe1.jpg
ADDED
![]() |
images/pipe2.jpg
ADDED
![]() |
images/pipe3.jpg
ADDED
![]() |
images/pipe4.jpg
ADDED
![]() |
output_images/output_pipe4.jpg
ADDED
![]() |
output_pipe4.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
torch
|
4 |
+
colorama
|
5 |
+
matplotlib
|
6 |
+
pillow
|
7 |
+
torchvision
|