File size: 1,781 Bytes
c39f4f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: other
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: /ML-A100/team/mm/eamon/self_instruction/seed_ppl/models/Qwen_72B
model-index:
- name: on_base_iter2_2epoch_d1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# on_base_iter2_2epoch_d1

This model is a fine-tuned version of [/ML-A100/team/mm/eamon/self_instruction/seed_ppl/models/Qwen_72B](https://huggingface.co//ML-A100/team/mm/eamon/self_instruction/seed_ppl/models/Qwen_72B) on the on_base_iter2_2epoch_d1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4966

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4598        | 0.5917 | 100  | 0.5030          |
| 0.4722        | 1.1834 | 200  | 0.4966          |
| 0.4785        | 1.7751 | 300  | 0.5004          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1