End of training
Browse files- pytorch_model.bin +1 -1
- segformer-b0-finetuned-segments-construction-outputs/README.md +0 -117
- segformer-b0-finetuned-segments-construction-outputs/config.json +0 -96
- segformer-b0-finetuned-segments-construction-outputs/pytorch_model.bin +0 -3
- segformer-b0-finetuned-segments-construction-outputs/training_args.bin +0 -3
- training_args.bin +1 -1
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14941005
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1066f9fd80f41bd2a6aee8e5acbe78427ed3362fc5c80015c913bf236f6143e6
|
3 |
size 14941005
|
segformer-b0-finetuned-segments-construction-outputs/README.md
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
tags:
|
4 |
-
- vision
|
5 |
-
- image-segmentation
|
6 |
-
- generated_from_trainer
|
7 |
-
model-index:
|
8 |
-
- name: segformer-b0-finetuned-segments-construction-1
|
9 |
-
results: []
|
10 |
-
---
|
11 |
-
|
12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
-
|
15 |
-
# segformer-b0-finetuned-segments-construction-1
|
16 |
-
|
17 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the yiming19/construction_place dataset.
|
18 |
-
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.2796
|
20 |
-
- Mean Iou: 0.3218
|
21 |
-
- Mean Accuracy: 0.5305
|
22 |
-
- Overall Accuracy: 0.9276
|
23 |
-
- Accuracy Unlabeled: nan
|
24 |
-
- Accuracy Ruler: 0.8954
|
25 |
-
- Accuracy Socket: 0.0
|
26 |
-
- Accuracy Wall: 0.9644
|
27 |
-
- Accuracy Window: nan
|
28 |
-
- Accuracy Heater: nan
|
29 |
-
- Accuracy Floor: 0.6710
|
30 |
-
- Accuracy Ceiling: 0.0
|
31 |
-
- Accuracy Skirting: nan
|
32 |
-
- Accuracy Door: 0.6525
|
33 |
-
- Accuracy Light: nan
|
34 |
-
- Iou Unlabeled: nan
|
35 |
-
- Iou Ruler: 0.7222
|
36 |
-
- Iou Socket: 0.0
|
37 |
-
- Iou Wall: 0.9553
|
38 |
-
- Iou Window: 0.0
|
39 |
-
- Iou Heater: nan
|
40 |
-
- Iou Floor: 0.2630
|
41 |
-
- Iou Ceiling: 0.0
|
42 |
-
- Iou Skirting: 0.0
|
43 |
-
- Iou Door: 0.6342
|
44 |
-
- Iou Light: nan
|
45 |
-
|
46 |
-
## Model description
|
47 |
-
|
48 |
-
More information needed
|
49 |
-
|
50 |
-
## Intended uses & limitations
|
51 |
-
|
52 |
-
More information needed
|
53 |
-
|
54 |
-
## Training and evaluation data
|
55 |
-
|
56 |
-
More information needed
|
57 |
-
|
58 |
-
## Training procedure
|
59 |
-
|
60 |
-
### Training hyperparameters
|
61 |
-
|
62 |
-
The following hyperparameters were used during training:
|
63 |
-
- learning_rate: 6e-05
|
64 |
-
- train_batch_size: 2
|
65 |
-
- eval_batch_size: 2
|
66 |
-
- seed: 42
|
67 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
-
- lr_scheduler_type: linear
|
69 |
-
- num_epochs: 50
|
70 |
-
|
71 |
-
### Training results
|
72 |
-
|
73 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Ruler | Accuracy Socket | Accuracy Wall | Accuracy Window | Accuracy Heater | Accuracy Floor | Accuracy Ceiling | Accuracy Skirting | Accuracy Door | Accuracy Light | Iou Unlabeled | Iou Ruler | Iou Socket | Iou Wall | Iou Window | Iou Heater | Iou Floor | Iou Ceiling | Iou Skirting | Iou Door | Iou Light |
|
74 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:---------------:|:-------------:|:---------------:|:---------------:|:--------------:|:----------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:---------:|:----------:|:--------:|:----------:|:----------:|:---------:|:-----------:|:------------:|:--------:|:---------:|
|
75 |
-
| 1.8126 | 1.43 | 20 | 2.1233 | 0.1955 | 0.5160 | 0.8448 | nan | 0.8191 | 0.0 | 0.8868 | nan | nan | 0.9618 | 0.0 | nan | 0.4281 | nan | 0.0 | 0.5555 | 0.0 | 0.8845 | 0.0 | 0.0 | 0.2971 | 0.0 | 0.0 | 0.4135 | 0.0 |
|
76 |
-
| 1.905 | 2.86 | 40 | 1.3611 | 0.1827 | 0.4921 | 0.8505 | nan | 0.9275 | 0.0 | 0.9139 | nan | nan | 0.9627 | 0.0 | nan | 0.1484 | nan | nan | 0.5404 | 0.0 | 0.9095 | 0.0 | 0.0 | 0.2289 | 0.0 | 0.0 | 0.1484 | 0.0 |
|
77 |
-
| 1.1072 | 4.29 | 60 | 1.0502 | 0.2327 | 0.5517 | 0.8903 | nan | 0.9108 | 0.0 | 0.9266 | nan | nan | 0.9367 | 0.0 | nan | 0.5360 | nan | nan | 0.5301 | 0.0 | 0.9206 | 0.0 | 0.0 | 0.3475 | 0.0 | 0.0 | 0.5284 | 0.0 |
|
78 |
-
| 1.0076 | 5.71 | 80 | 0.8802 | 0.2744 | 0.5609 | 0.9089 | nan | 0.8208 | 0.0 | 0.9410 | nan | nan | 0.9532 | 0.0 | nan | 0.6505 | nan | nan | 0.5500 | 0.0 | 0.9277 | 0.0 | 0.0 | 0.3688 | 0.0 | 0.0 | 0.6227 | nan |
|
79 |
-
| 1.5533 | 7.14 | 100 | 0.8991 | 0.2846 | 0.5514 | 0.8878 | nan | 0.8918 | 0.0 | 0.9243 | nan | nan | 0.9591 | 0.0 | nan | 0.5332 | nan | nan | 0.5262 | 0.0 | 0.9169 | 0.0 | nan | 0.3209 | 0.0 | 0.0 | 0.5132 | nan |
|
80 |
-
| 0.9912 | 8.57 | 120 | 0.9340 | 0.2891 | 0.5652 | 0.8854 | nan | 0.9478 | 0.0 | 0.9151 | nan | nan | 0.9438 | 0.0 | nan | 0.5844 | nan | nan | 0.5059 | 0.0 | 0.9098 | 0.0 | nan | 0.3424 | 0.0 | 0.0 | 0.5544 | nan |
|
81 |
-
| 0.784 | 10.0 | 140 | 0.7017 | 0.3140 | 0.5984 | 0.9173 | nan | 0.9136 | 0.0 | 0.9305 | nan | nan | 0.8971 | 0.0 | nan | 0.8493 | nan | nan | 0.5324 | 0.0 | 0.9224 | 0.0 | 0.0 | 0.5805 | 0.0 | 0.0 | 0.7909 | nan |
|
82 |
-
| 0.5636 | 11.43 | 160 | 0.6925 | 0.3573 | 0.5978 | 0.9280 | nan | 0.8714 | 0.0 | 0.9412 | nan | nan | 0.8868 | 0.0 | nan | 0.8876 | nan | nan | 0.5701 | 0.0 | 0.9308 | 0.0 | nan | 0.5638 | 0.0 | 0.0 | 0.7935 | nan |
|
83 |
-
| 1.0692 | 12.86 | 180 | 0.7313 | 0.2931 | 0.5724 | 0.8981 | nan | 0.9587 | 0.0 | 0.9231 | nan | nan | 0.8880 | 0.0 | nan | 0.6647 | nan | nan | 0.4988 | 0.0 | 0.9182 | 0.0 | nan | 0.3342 | 0.0 | 0.0 | 0.5932 | nan |
|
84 |
-
| 0.7603 | 14.29 | 200 | 0.6907 | 0.2577 | 0.5744 | 0.9001 | nan | 0.9619 | 0.0 | 0.9251 | nan | nan | 0.8930 | 0.0 | nan | 0.6661 | nan | nan | 0.4939 | 0.0 | 0.9208 | 0.0 | 0.0 | 0.3219 | 0.0 | 0.0 | 0.5824 | nan |
|
85 |
-
| 0.9509 | 15.71 | 220 | 0.5110 | 0.3682 | 0.6069 | 0.9324 | nan | 0.9355 | 0.0 | 0.9417 | nan | nan | 0.8453 | 0.0 | nan | 0.9191 | nan | nan | 0.5671 | 0.0 | 0.9334 | 0.0 | nan | 0.6050 | 0.0 | 0.0 | 0.8403 | nan |
|
86 |
-
| 0.4254 | 17.14 | 240 | 0.5925 | 0.2961 | 0.5629 | 0.9023 | nan | 0.9646 | 0.0 | 0.9295 | nan | nan | 0.8261 | 0.0 | nan | 0.6569 | nan | nan | 0.5302 | 0.0 | 0.9243 | 0.0 | nan | 0.3138 | 0.0 | 0.0 | 0.6009 | nan |
|
87 |
-
| 0.3839 | 18.57 | 260 | 0.4226 | 0.3537 | 0.5479 | 0.9367 | nan | 0.9108 | 0.0 | 0.9540 | nan | nan | 0.5102 | 0.0 | nan | 0.9124 | nan | nan | 0.6643 | 0.0 | 0.9426 | 0.0 | nan | 0.3868 | 0.0 | 0.0 | 0.8361 | nan |
|
88 |
-
| 0.7441 | 20.0 | 280 | 0.5084 | 0.3533 | 0.5993 | 0.9277 | nan | 0.9691 | 0.0 | 0.9391 | nan | nan | 0.8075 | 0.0 | nan | 0.8801 | nan | nan | 0.5527 | 0.0 | 0.9333 | 0.0 | nan | 0.5197 | 0.0 | 0.0 | 0.8208 | nan |
|
89 |
-
| 0.4374 | 21.43 | 300 | 0.4683 | 0.3038 | 0.5549 | 0.9173 | nan | 0.9662 | 0.0 | 0.9480 | nan | nan | 0.7594 | 0.0 | nan | 0.6558 | nan | nan | 0.6024 | 0.0 | 0.9419 | 0.0 | nan | 0.2804 | 0.0 | 0.0 | 0.6056 | nan |
|
90 |
-
| 0.6224 | 22.86 | 320 | 0.4100 | 0.3810 | 0.5960 | 0.9374 | nan | 0.9704 | 0.0 | 0.9460 | nan | nan | 0.7131 | 0.0 | nan | 0.9467 | nan | nan | 0.5986 | 0.0 | 0.9401 | 0.0 | nan | 0.6197 | 0.0 | 0.0 | 0.8898 | nan |
|
91 |
-
| 0.4473 | 24.29 | 340 | 0.3933 | 0.3368 | 0.5431 | 0.9336 | nan | 0.9212 | 0.0 | 0.9620 | nan | nan | 0.6197 | 0.0 | nan | 0.7556 | nan | nan | 0.7221 | 0.0 | 0.9521 | 0.0 | nan | 0.2958 | 0.0 | 0.0 | 0.7245 | nan |
|
92 |
-
| 0.3364 | 25.71 | 360 | 0.4336 | 0.2976 | 0.5125 | 0.9134 | nan | 0.9408 | 0.0 | 0.9544 | nan | nan | 0.6075 | 0.0 | nan | 0.5721 | nan | nan | 0.6918 | 0.0 | 0.9481 | 0.0 | nan | 0.1998 | 0.0 | 0.0 | 0.5411 | nan |
|
93 |
-
| 0.281 | 27.14 | 380 | 0.3795 | 0.3689 | 0.5760 | 0.9420 | nan | 0.9250 | 0.0 | 0.9589 | nan | nan | 0.6859 | 0.0 | nan | 0.8863 | nan | nan | 0.7108 | 0.0 | 0.9518 | 0.0 | nan | 0.4576 | 0.0 | 0.0 | 0.8305 | nan |
|
94 |
-
| 0.3198 | 28.57 | 400 | 0.4023 | 0.3158 | 0.5143 | 0.9238 | nan | 0.9120 | 0.0 | 0.9610 | nan | nan | 0.5580 | 0.0 | nan | 0.6550 | nan | nan | 0.7210 | 0.0 | 0.9519 | 0.0 | nan | 0.2238 | 0.0 | 0.0 | 0.6293 | nan |
|
95 |
-
| 0.4624 | 30.0 | 420 | 0.3565 | 0.3770 | 0.5774 | 0.9475 | nan | 0.9408 | 0.0 | 0.9613 | nan | nan | 0.6287 | 0.0 | nan | 0.9337 | nan | nan | 0.6855 | 0.0 | 0.9539 | 0.0 | nan | 0.4943 | 0.0 | 0.0 | 0.8827 | nan |
|
96 |
-
| 0.2356 | 31.43 | 440 | 0.3940 | 0.3100 | 0.5349 | 0.9221 | nan | 0.9268 | 0.0 | 0.9602 | nan | nan | 0.7187 | 0.0 | nan | 0.6040 | nan | nan | 0.7005 | 0.0 | 0.9536 | 0.0 | nan | 0.2474 | 0.0 | 0.0 | 0.5781 | nan |
|
97 |
-
| 0.3931 | 32.86 | 460 | 0.3516 | 0.3162 | 0.5570 | 0.9258 | nan | 0.9338 | 0.0 | 0.9598 | nan | nan | 0.8124 | 0.0 | nan | 0.6362 | nan | nan | 0.6824 | 0.0 | 0.9542 | 0.0 | nan | 0.2888 | 0.0 | 0.0 | 0.6040 | nan |
|
98 |
-
| 0.2431 | 34.29 | 480 | 0.4011 | 0.2955 | 0.5291 | 0.9138 | nan | 0.9242 | 0.0 | 0.9583 | nan | nan | 0.7864 | 0.0 | nan | 0.5058 | nan | nan | 0.6954 | 0.0 | 0.9520 | 0.0 | nan | 0.2331 | 0.0 | 0.0 | 0.4832 | nan |
|
99 |
-
| 0.2131 | 35.71 | 500 | 0.2847 | 0.3764 | 0.5613 | 0.9487 | nan | 0.8877 | 0.0 | 0.9679 | nan | nan | 0.6103 | 0.0 | nan | 0.9020 | nan | nan | 0.7330 | 0.0 | 0.9571 | 0.0 | nan | 0.4539 | 0.0 | 0.0 | 0.8669 | nan |
|
100 |
-
| 0.4151 | 37.14 | 520 | 0.3176 | 0.3186 | 0.5239 | 0.9256 | nan | 0.8930 | 0.0 | 0.9640 | nan | nan | 0.6505 | 0.0 | nan | 0.6356 | nan | nan | 0.7251 | 0.0 | 0.9544 | 0.0 | nan | 0.2507 | 0.0 | 0.0 | 0.6187 | nan |
|
101 |
-
| 0.2408 | 38.57 | 540 | 0.3267 | 0.3071 | 0.5361 | 0.9208 | nan | 0.9264 | 0.0 | 0.9600 | nan | nan | 0.7441 | 0.0 | nan | 0.5859 | nan | nan | 0.6868 | 0.0 | 0.9538 | 0.0 | nan | 0.2526 | 0.0 | 0.0 | 0.5635 | nan |
|
102 |
-
| 0.2274 | 40.0 | 560 | 0.2875 | 0.3396 | 0.5471 | 0.9349 | nan | 0.9098 | 0.0 | 0.9626 | nan | nan | 0.6456 | 0.0 | nan | 0.7649 | nan | nan | 0.7018 | 0.0 | 0.9547 | 0.0 | nan | 0.3216 | 0.0 | 0.0 | 0.7387 | nan |
|
103 |
-
| 0.2452 | 41.43 | 580 | 0.2998 | 0.3181 | 0.5357 | 0.9279 | nan | 0.9089 | 0.0 | 0.9642 | nan | nan | 0.6932 | 0.0 | nan | 0.6480 | nan | nan | 0.7057 | 0.0 | 0.9562 | 0.0 | nan | 0.2578 | 0.0 | 0.0 | 0.6252 | nan |
|
104 |
-
| 0.2922 | 42.86 | 600 | 0.2957 | 0.3131 | 0.5246 | 0.9255 | nan | 0.9056 | 0.0 | 0.9643 | nan | nan | 0.6535 | 0.0 | nan | 0.6242 | nan | nan | 0.7103 | 0.0 | 0.9563 | 0.0 | nan | 0.2347 | 0.0 | 0.0 | 0.6037 | nan |
|
105 |
-
| 0.3704 | 44.29 | 620 | 0.3290 | 0.3172 | 0.5429 | 0.9247 | nan | 0.9246 | 0.0 | 0.9583 | nan | nan | 0.7123 | 0.0 | nan | 0.6621 | nan | nan | 0.6856 | 0.0 | 0.9527 | 0.0 | nan | 0.2707 | 0.0 | 0.0 | 0.6286 | nan |
|
106 |
-
| 0.2482 | 45.71 | 640 | 0.2995 | 0.3251 | 0.5368 | 0.9276 | nan | 0.9018 | 0.0 | 0.9617 | nan | nan | 0.6795 | 0.0 | nan | 0.6779 | nan | nan | 0.7154 | 0.0 | 0.9538 | 0.0 | nan | 0.2790 | 0.0 | 0.0 | 0.6528 | nan |
|
107 |
-
| 0.2798 | 47.14 | 660 | 0.2808 | 0.3323 | 0.5374 | 0.9319 | nan | 0.8938 | 0.0 | 0.9644 | nan | nan | 0.6554 | 0.0 | nan | 0.7110 | nan | nan | 0.7218 | 0.0 | 0.9554 | 0.0 | nan | 0.2919 | 0.0 | 0.0 | 0.6894 | nan |
|
108 |
-
| 0.2746 | 48.57 | 680 | 0.2695 | 0.3265 | 0.5341 | 0.9299 | nan | 0.8947 | 0.0 | 0.9642 | nan | nan | 0.6597 | 0.0 | nan | 0.6861 | nan | nan | 0.7198 | 0.0 | 0.9554 | 0.0 | nan | 0.2735 | 0.0 | 0.0 | 0.6633 | nan |
|
109 |
-
| 0.2169 | 50.0 | 700 | 0.2796 | 0.3218 | 0.5305 | 0.9276 | nan | 0.8954 | 0.0 | 0.9644 | nan | nan | 0.6710 | 0.0 | nan | 0.6525 | nan | nan | 0.7222 | 0.0 | 0.9553 | 0.0 | nan | 0.2630 | 0.0 | 0.0 | 0.6342 | nan |
|
110 |
-
|
111 |
-
|
112 |
-
### Framework versions
|
113 |
-
|
114 |
-
- Transformers 4.25.1
|
115 |
-
- Pytorch 1.13.1
|
116 |
-
- Datasets 2.10.1
|
117 |
-
- Tokenizers 0.13.0.dev0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segformer-b0-finetuned-segments-construction-outputs/config.json
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "nvidia/mit-b0",
|
3 |
-
"architectures": [
|
4 |
-
"SegformerForSemanticSegmentation"
|
5 |
-
],
|
6 |
-
"attention_probs_dropout_prob": 0.0,
|
7 |
-
"classifier_dropout_prob": 0.1,
|
8 |
-
"decoder_hidden_size": 256,
|
9 |
-
"depths": [
|
10 |
-
2,
|
11 |
-
2,
|
12 |
-
2,
|
13 |
-
2
|
14 |
-
],
|
15 |
-
"downsampling_rates": [
|
16 |
-
1,
|
17 |
-
4,
|
18 |
-
8,
|
19 |
-
16
|
20 |
-
],
|
21 |
-
"drop_path_rate": 0.1,
|
22 |
-
"hidden_act": "gelu",
|
23 |
-
"hidden_dropout_prob": 0.0,
|
24 |
-
"hidden_sizes": [
|
25 |
-
32,
|
26 |
-
64,
|
27 |
-
160,
|
28 |
-
256
|
29 |
-
],
|
30 |
-
"id2label": {
|
31 |
-
"0": "unlabeled",
|
32 |
-
"1": "ruler",
|
33 |
-
"2": "socket",
|
34 |
-
"3": "wall",
|
35 |
-
"4": "window",
|
36 |
-
"5": "heater",
|
37 |
-
"6": "floor",
|
38 |
-
"7": "ceiling",
|
39 |
-
"8": "skirting",
|
40 |
-
"9": "door",
|
41 |
-
"10": "light"
|
42 |
-
},
|
43 |
-
"image_size": 224,
|
44 |
-
"initializer_range": 0.02,
|
45 |
-
"label2id": {
|
46 |
-
"ceiling": 7,
|
47 |
-
"door": 9,
|
48 |
-
"floor": 6,
|
49 |
-
"heater": 5,
|
50 |
-
"light": 10,
|
51 |
-
"ruler": 1,
|
52 |
-
"skirting": 8,
|
53 |
-
"socket": 2,
|
54 |
-
"unlabeled": 0,
|
55 |
-
"wall": 3,
|
56 |
-
"window": 4
|
57 |
-
},
|
58 |
-
"layer_norm_eps": 1e-06,
|
59 |
-
"mlp_ratios": [
|
60 |
-
4,
|
61 |
-
4,
|
62 |
-
4,
|
63 |
-
4
|
64 |
-
],
|
65 |
-
"model_type": "segformer",
|
66 |
-
"num_attention_heads": [
|
67 |
-
1,
|
68 |
-
2,
|
69 |
-
5,
|
70 |
-
8
|
71 |
-
],
|
72 |
-
"num_channels": 3,
|
73 |
-
"num_encoder_blocks": 4,
|
74 |
-
"patch_sizes": [
|
75 |
-
7,
|
76 |
-
3,
|
77 |
-
3,
|
78 |
-
3
|
79 |
-
],
|
80 |
-
"reshape_last_stage": true,
|
81 |
-
"semantic_loss_ignore_index": 255,
|
82 |
-
"sr_ratios": [
|
83 |
-
8,
|
84 |
-
4,
|
85 |
-
2,
|
86 |
-
1
|
87 |
-
],
|
88 |
-
"strides": [
|
89 |
-
4,
|
90 |
-
2,
|
91 |
-
2,
|
92 |
-
2
|
93 |
-
],
|
94 |
-
"torch_dtype": "float32",
|
95 |
-
"transformers_version": "4.25.1"
|
96 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segformer-b0-finetuned-segments-construction-outputs/pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:00eeea3a83fecf657a45edfa9b390dda6be1248b48c05aea838d7bb7b4e15444
|
3 |
-
size 14941005
|
|
|
|
|
|
|
|
segformer-b0-finetuned-segments-construction-outputs/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d58fbd9bf4946ef25d9761f0566d98188d4ed5637376c7eca5ff8c56dc9e51bd
|
3 |
-
size 3515
|
|
|
|
|
|
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3515
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a182fe45e17b5451aa84df459974b73d72344fd3cc5d00030cb09fc7328f1aec
|
3 |
size 3515
|