File size: 10,133 Bytes
96506f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---

license: other
base_model: nvidia/mit-b1
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b1-miic-tl
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b1-miic-tl

This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the yijisuk/ic-chip-sample dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1915
- Mean Iou: 0.4765
- Mean Accuracy: 0.9531
- Overall Accuracy: 0.9531
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.9531
- Iou Unlabeled: 0.0
- Iou Circuit: 0.9531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|
| 0.7961        | 1.0   | 20   | 0.5776          | 0.3160   | 0.6320        | 0.6320           | nan                | 0.6320           | 0.0           | 0.6320      |
| 0.7261        | 2.0   | 40   | 0.4222          | 0.4655   | 0.9310        | 0.9310           | nan                | 0.9310           | 0.0           | 0.9310      |
| 0.3132        | 3.0   | 60   | 0.2869          | 0.4478   | 0.8956        | 0.8956           | nan                | 0.8956           | 0.0           | 0.8956      |
| 0.2224        | 4.0   | 80   | 0.2898          | 0.4817   | 0.9635        | 0.9635           | nan                | 0.9635           | 0.0           | 0.9635      |
| 0.1641        | 5.0   | 100  | 0.2861          | 0.4733   | 0.9466        | 0.9466           | nan                | 0.9466           | 0.0           | 0.9466      |
| 0.9802        | 6.0   | 120  | 0.3005          | 0.4790   | 0.9581        | 0.9581           | nan                | 0.9581           | 0.0           | 0.9581      |
| 0.1633        | 7.0   | 140  | 0.2953          | 0.4397   | 0.8794        | 0.8794           | nan                | 0.8794           | 0.0           | 0.8794      |
| 0.3674        | 8.0   | 160  | 0.2951          | 0.4809   | 0.9619        | 0.9619           | nan                | 0.9619           | 0.0           | 0.9619      |
| 0.1632        | 9.0   | 180  | 0.3007          | 0.4740   | 0.9480        | 0.9480           | nan                | 0.9480           | 0.0           | 0.9480      |
| 0.3719        | 10.0  | 200  | 0.2633          | 0.4687   | 0.9374        | 0.9374           | nan                | 0.9374           | 0.0           | 0.9374      |
| 0.2061        | 11.0  | 220  | 0.2544          | 0.4575   | 0.9150        | 0.9150           | nan                | 0.9150           | 0.0           | 0.9150      |
| 0.1756        | 12.0  | 240  | 0.2587          | 0.4856   | 0.9711        | 0.9711           | nan                | 0.9711           | 0.0           | 0.9711      |
| 0.366         | 13.0  | 260  | 0.2458          | 0.4883   | 0.9765        | 0.9765           | nan                | 0.9765           | 0.0           | 0.9765      |
| 0.2532        | 14.0  | 280  | 0.2742          | 0.4771   | 0.9543        | 0.9543           | nan                | 0.9543           | 0.0           | 0.9543      |
| 0.144         | 15.0  | 300  | 0.2424          | 0.4612   | 0.9223        | 0.9223           | nan                | 0.9223           | 0.0           | 0.9223      |
| 0.1314        | 16.0  | 320  | 0.2130          | 0.4745   | 0.9489        | 0.9489           | nan                | 0.9489           | 0.0           | 0.9489      |
| 1.4391        | 17.0  | 340  | 0.2156          | 0.4813   | 0.9626        | 0.9626           | nan                | 0.9626           | 0.0           | 0.9626      |
| 0.211         | 18.0  | 360  | 0.1995          | 0.4767   | 0.9533        | 0.9533           | nan                | 0.9533           | 0.0           | 0.9533      |
| 0.0792        | 19.0  | 380  | 0.2052          | 0.4855   | 0.9710        | 0.9710           | nan                | 0.9710           | 0.0           | 0.9710      |
| 1.1           | 20.0  | 400  | 0.1972          | 0.4712   | 0.9424        | 0.9424           | nan                | 0.9424           | 0.0           | 0.9424      |
| 0.067         | 21.0  | 420  | 0.2015          | 0.4697   | 0.9394        | 0.9394           | nan                | 0.9394           | 0.0           | 0.9394      |
| 0.1783        | 22.0  | 440  | 0.2100          | 0.4821   | 0.9642        | 0.9642           | nan                | 0.9642           | 0.0           | 0.9642      |
| 0.1594        | 23.0  | 460  | 0.1989          | 0.4746   | 0.9491        | 0.9491           | nan                | 0.9491           | 0.0           | 0.9491      |
| 0.2306        | 24.0  | 480  | 0.1957          | 0.4668   | 0.9337        | 0.9337           | nan                | 0.9337           | 0.0           | 0.9337      |
| 0.9809        | 25.0  | 500  | 0.1971          | 0.4802   | 0.9603        | 0.9603           | nan                | 0.9603           | 0.0           | 0.9603      |
| 0.1154        | 26.0  | 520  | 0.1957          | 0.4792   | 0.9585        | 0.9585           | nan                | 0.9585           | 0.0           | 0.9585      |
| 0.2142        | 27.0  | 540  | 0.1945          | 0.4827   | 0.9655        | 0.9655           | nan                | 0.9655           | 0.0           | 0.9655      |
| 0.177         | 28.0  | 560  | 0.1930          | 0.4725   | 0.9451        | 0.9451           | nan                | 0.9451           | 0.0           | 0.9451      |
| 0.2003        | 29.0  | 580  | 0.1965          | 0.4827   | 0.9654        | 0.9654           | nan                | 0.9654           | 0.0           | 0.9654      |
| 0.1977        | 30.0  | 600  | 0.1995          | 0.4861   | 0.9722        | 0.9722           | nan                | 0.9722           | 0.0           | 0.9722      |
| 0.1671        | 31.0  | 620  | 0.1946          | 0.4760   | 0.9520        | 0.9520           | nan                | 0.9520           | 0.0           | 0.9520      |
| 0.1449        | 32.0  | 640  | 0.1895          | 0.4642   | 0.9285        | 0.9285           | nan                | 0.9285           | 0.0           | 0.9285      |
| 0.2587        | 33.0  | 660  | 0.1920          | 0.4810   | 0.9619        | 0.9619           | nan                | 0.9619           | 0.0           | 0.9619      |
| 1.2053        | 34.0  | 680  | 0.1931          | 0.4790   | 0.9579        | 0.9579           | nan                | 0.9579           | 0.0           | 0.9579      |
| 0.1107        | 35.0  | 700  | 0.1951          | 0.4824   | 0.9647        | 0.9647           | nan                | 0.9647           | 0.0           | 0.9647      |
| 0.0821        | 36.0  | 720  | 0.1926          | 0.4788   | 0.9577        | 0.9577           | nan                | 0.9577           | 0.0           | 0.9577      |
| 0.5034        | 37.0  | 740  | 0.1903          | 0.4656   | 0.9311        | 0.9311           | nan                | 0.9311           | 0.0           | 0.9311      |
| 0.137         | 38.0  | 760  | 0.1892          | 0.4684   | 0.9368        | 0.9368           | nan                | 0.9368           | 0.0           | 0.9368      |
| 0.2861        | 39.0  | 780  | 0.1911          | 0.4762   | 0.9524        | 0.9524           | nan                | 0.9524           | 0.0           | 0.9524      |
| 0.965         | 40.0  | 800  | 0.1928          | 0.4716   | 0.9432        | 0.9432           | nan                | 0.9432           | 0.0           | 0.9432      |
| 0.138         | 41.0  | 820  | 0.1926          | 0.4742   | 0.9483        | 0.9483           | nan                | 0.9483           | 0.0           | 0.9483      |
| 0.0291        | 42.0  | 840  | 0.1888          | 0.4689   | 0.9378        | 0.9378           | nan                | 0.9378           | 0.0           | 0.9378      |
| 0.0624        | 43.0  | 860  | 0.1895          | 0.4684   | 0.9369        | 0.9369           | nan                | 0.9369           | 0.0           | 0.9369      |
| 0.0611        | 44.0  | 880  | 0.1915          | 0.4772   | 0.9545        | 0.9545           | nan                | 0.9545           | 0.0           | 0.9545      |
| 0.0322        | 45.0  | 900  | 0.1893          | 0.4670   | 0.9340        | 0.9340           | nan                | 0.9340           | 0.0           | 0.9340      |
| 0.0927        | 46.0  | 920  | 0.1901          | 0.4714   | 0.9428        | 0.9428           | nan                | 0.9428           | 0.0           | 0.9428      |
| 0.1752        | 47.0  | 940  | 0.1897          | 0.4758   | 0.9516        | 0.9516           | nan                | 0.9516           | 0.0           | 0.9516      |
| 0.1343        | 48.0  | 960  | 0.1906          | 0.4779   | 0.9559        | 0.9559           | nan                | 0.9559           | 0.0           | 0.9559      |
| 0.0765        | 49.0  | 980  | 0.1903          | 0.4732   | 0.9464        | 0.9464           | nan                | 0.9464           | 0.0           | 0.9464      |
| 0.048         | 50.0  | 1000 | 0.1915          | 0.4765   | 0.9531        | 0.9531           | nan                | 0.9531           | 0.0           | 0.9531      |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0