Upload 2 files
Browse files- full_dicts.pkl +3 -0
- modeling_xlmr_decoupled.py +1008 -0
full_dicts.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3553ee9bb39b51124ca2e3b0b5227f6b765cde8f7f77d5832e7be731830029b0
|
3 |
+
size 9608
|
modeling_xlmr_decoupled.py
ADDED
@@ -0,0 +1,1008 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch XLM-RoBERTa model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN, gelu
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
MaskedLMOutput,
|
32 |
+
MultipleChoiceModelOutput,
|
33 |
+
QuestionAnsweringModelOutput,
|
34 |
+
SequenceClassifierOutput,
|
35 |
+
TokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from transformers.modeling_utils import PreTrainedModel
|
38 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
39 |
+
from transformers.utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
|
47 |
+
from transformers.models.xlm_roberta.modeling_xlm_roberta import (
|
48 |
+
XLMRobertaEncoder,
|
49 |
+
XLMRobertaPooler,
|
50 |
+
XLMRobertaPreTrainedModel,
|
51 |
+
XLMRobertaClassificationHead
|
52 |
+
)
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base"
|
57 |
+
_CONFIG_FOR_DOC = "XLMRobertaConfig"
|
58 |
+
|
59 |
+
|
60 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->XLMRoberta
|
61 |
+
class XLMRobertaDecoupledEmbeddings(nn.Module):
|
62 |
+
"""
|
63 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
64 |
+
"""
|
65 |
+
|
66 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
67 |
+
def __init__(self, config):
|
68 |
+
super().__init__()
|
69 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
70 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
71 |
+
# self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
72 |
+
|
73 |
+
# this is used as the language embedding
|
74 |
+
if config.use_lang_embedding is True:
|
75 |
+
self.lang_type_embeddings = nn.Embedding(config.lang_size, config.hidden_size)
|
76 |
+
|
77 |
+
# this is used as the script embedding
|
78 |
+
if config.use_script_embedding is True:
|
79 |
+
self.script_type_embeddings = nn.Embedding(config.script_size, config.hidden_size)
|
80 |
+
|
81 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
82 |
+
# any TensorFlow checkpoint file
|
83 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
84 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
85 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
86 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
87 |
+
self.register_buffer(
|
88 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
89 |
+
)
|
90 |
+
self.register_buffer(
|
91 |
+
"token_lang_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
92 |
+
)
|
93 |
+
self.register_buffer(
|
94 |
+
"token_script_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
95 |
+
)
|
96 |
+
|
97 |
+
# End copy
|
98 |
+
self.padding_idx = config.pad_token_id
|
99 |
+
self.position_embeddings = nn.Embedding(
|
100 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
101 |
+
)
|
102 |
+
self.config = config
|
103 |
+
|
104 |
+
def forward(
|
105 |
+
self, token_lang_ids=None, token_script_ids=None,
|
106 |
+
input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
107 |
+
):
|
108 |
+
if position_ids is None:
|
109 |
+
if input_ids is not None:
|
110 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
111 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
112 |
+
else:
|
113 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
114 |
+
|
115 |
+
if inputs_embeds is None:
|
116 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
117 |
+
|
118 |
+
if self.config.decouple_at_input_embeddings:
|
119 |
+
if token_lang_ids is None and self.config.use_lang_embedding is True:
|
120 |
+
raise ValueError("token_lang_ids cannot be None if use_lang_embed is True")
|
121 |
+
else:
|
122 |
+
if self.config.use_lang_embedding is True:
|
123 |
+
token_lang_embeddings = self.lang_type_embeddings(token_lang_ids)
|
124 |
+
inputs_embeds = inputs_embeds + token_lang_embeddings
|
125 |
+
if token_script_ids is None and self.config.use_script_embedding is True:
|
126 |
+
raise ValueError("token_script_ids cannot be None if use_script_embedding is True")
|
127 |
+
else:
|
128 |
+
if self.config.use_script_embedding:
|
129 |
+
token_script_embeddings = self.script_type_embeddings(token_lang_ids)
|
130 |
+
inputs_embeds = inputs_embeds + token_script_embeddings
|
131 |
+
|
132 |
+
embeddings = inputs_embeds
|
133 |
+
|
134 |
+
if self.position_embedding_type == "absolute":
|
135 |
+
position_embeddings = self.position_embeddings(position_ids)
|
136 |
+
embeddings += position_embeddings
|
137 |
+
embeddings = self.LayerNorm(embeddings)
|
138 |
+
embeddings = self.dropout(embeddings)
|
139 |
+
return embeddings
|
140 |
+
|
141 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
142 |
+
"""
|
143 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
inputs_embeds: torch.Tensor
|
147 |
+
|
148 |
+
Returns: torch.Tensor
|
149 |
+
"""
|
150 |
+
input_shape = inputs_embeds.size()[:-1]
|
151 |
+
sequence_length = input_shape[1]
|
152 |
+
|
153 |
+
position_ids = torch.arange(
|
154 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
155 |
+
)
|
156 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
157 |
+
|
158 |
+
|
159 |
+
XLM_ROBERTA_START_DOCSTRING = r"""
|
160 |
+
|
161 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
162 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
163 |
+
etc.)
|
164 |
+
|
165 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
166 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
167 |
+
and behavior.
|
168 |
+
|
169 |
+
Parameters:
|
170 |
+
config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the
|
171 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
172 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
173 |
+
"""
|
174 |
+
|
175 |
+
XLM_ROBERTA_INPUTS_DOCSTRING = r"""
|
176 |
+
Args:
|
177 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
178 |
+
Indices of input sequence tokens in the vocabulary.
|
179 |
+
|
180 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
181 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
182 |
+
|
183 |
+
[What are input IDs?](../glossary#input-ids)
|
184 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
185 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
186 |
+
|
187 |
+
- 1 for tokens that are **not masked**,
|
188 |
+
- 0 for tokens that are **masked**.
|
189 |
+
|
190 |
+
[What are attention masks?](../glossary#attention-mask)
|
191 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
192 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
193 |
+
1]`:
|
194 |
+
|
195 |
+
- 0 corresponds to a *sentence A* token,
|
196 |
+
- 1 corresponds to a *sentence B* token.
|
197 |
+
|
198 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
199 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
200 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
201 |
+
config.max_position_embeddings - 1]`.
|
202 |
+
|
203 |
+
[What are position IDs?](../glossary#position-ids)
|
204 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
205 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
206 |
+
|
207 |
+
- 1 indicates the head is **not masked**,
|
208 |
+
- 0 indicates the head is **masked**.
|
209 |
+
|
210 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
211 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
212 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
213 |
+
model's internal embedding lookup matrix.
|
214 |
+
output_attentions (`bool`, *optional*):
|
215 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
216 |
+
tensors for more detail.
|
217 |
+
output_hidden_states (`bool`, *optional*):
|
218 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
219 |
+
more detail.
|
220 |
+
return_dict (`bool`, *optional*):
|
221 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
222 |
+
"""
|
223 |
+
|
224 |
+
|
225 |
+
@add_start_docstrings(
|
226 |
+
"The bare XLM-RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
227 |
+
XLM_ROBERTA_START_DOCSTRING,
|
228 |
+
)
|
229 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
230 |
+
class XLMRobertaDecoupledModel(XLMRobertaPreTrainedModel):
|
231 |
+
"""
|
232 |
+
|
233 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
234 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
235 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
236 |
+
Kaiser and Illia Polosukhin.
|
237 |
+
|
238 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
239 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
240 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
241 |
+
|
242 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
243 |
+
|
244 |
+
"""
|
245 |
+
|
246 |
+
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->XLMRoberta
|
247 |
+
def __init__(self, config, add_pooling_layer=True):
|
248 |
+
super().__init__(config)
|
249 |
+
self.config = config
|
250 |
+
|
251 |
+
self.embeddings = XLMRobertaDecoupledEmbeddings(config)
|
252 |
+
self.encoder = XLMRobertaEncoder(config)
|
253 |
+
|
254 |
+
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
|
255 |
+
|
256 |
+
# Initialize weights and apply final processing
|
257 |
+
self.post_init()
|
258 |
+
|
259 |
+
def get_input_embeddings(self):
|
260 |
+
return self.embeddings.word_embeddings
|
261 |
+
|
262 |
+
def set_input_embeddings(self, value):
|
263 |
+
self.embeddings.word_embeddings = value
|
264 |
+
|
265 |
+
def _prune_heads(self, heads_to_prune):
|
266 |
+
"""
|
267 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
268 |
+
class PreTrainedModel
|
269 |
+
"""
|
270 |
+
for layer, heads in heads_to_prune.items():
|
271 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
272 |
+
|
273 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
274 |
+
@add_code_sample_docstrings(
|
275 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
276 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
277 |
+
config_class=_CONFIG_FOR_DOC,
|
278 |
+
)
|
279 |
+
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.forward
|
280 |
+
def forward(
|
281 |
+
self,
|
282 |
+
input_ids: Optional[torch.Tensor] = None,
|
283 |
+
attention_mask: Optional[torch.Tensor] = None,
|
284 |
+
token_lang_ids: Optional[torch.Tensor] = None,
|
285 |
+
token_script_ids: Optional[torch.Tensor] = None,
|
286 |
+
position_ids: Optional[torch.Tensor] = None,
|
287 |
+
head_mask: Optional[torch.Tensor] = None,
|
288 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
289 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
290 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
291 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
292 |
+
use_cache: Optional[bool] = None,
|
293 |
+
output_attentions: Optional[bool] = None,
|
294 |
+
output_hidden_states: Optional[bool] = None,
|
295 |
+
return_dict: Optional[bool] = None,
|
296 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
297 |
+
r"""
|
298 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
299 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
300 |
+
the model is configured as a decoder.
|
301 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
302 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
303 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
304 |
+
|
305 |
+
- 1 for tokens that are **not masked**,
|
306 |
+
- 0 for tokens that are **masked**.
|
307 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
308 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
309 |
+
|
310 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
311 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
312 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
313 |
+
use_cache (`bool`, *optional*):
|
314 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
315 |
+
`past_key_values`).
|
316 |
+
"""
|
317 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
318 |
+
output_hidden_states = (
|
319 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
320 |
+
)
|
321 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
322 |
+
|
323 |
+
if self.config.is_decoder:
|
324 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
325 |
+
else:
|
326 |
+
use_cache = False
|
327 |
+
|
328 |
+
if input_ids is not None and inputs_embeds is not None:
|
329 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
330 |
+
elif input_ids is not None:
|
331 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
332 |
+
input_shape = input_ids.size()
|
333 |
+
elif inputs_embeds is not None:
|
334 |
+
input_shape = inputs_embeds.size()[:-1]
|
335 |
+
else:
|
336 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
337 |
+
|
338 |
+
batch_size, seq_length = input_shape
|
339 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
340 |
+
|
341 |
+
# past_key_values_length
|
342 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
343 |
+
|
344 |
+
if attention_mask is None:
|
345 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
346 |
+
|
347 |
+
if self.config.decouple_at_input_embeddings:
|
348 |
+
if token_lang_ids is None and self.config.use_lang_embedding is True:
|
349 |
+
raise ValueError("token_lang_ids cannot be None if use_lang_embed is True")
|
350 |
+
if token_script_ids is None and self.config.use_script_embedding is True:
|
351 |
+
raise ValueError("token_script_ids cannot be None if use_script_embedding is True")
|
352 |
+
|
353 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
354 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
355 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
356 |
+
|
357 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
358 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
359 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
360 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
361 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
362 |
+
if encoder_attention_mask is None:
|
363 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
364 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
365 |
+
else:
|
366 |
+
encoder_extended_attention_mask = None
|
367 |
+
|
368 |
+
# Prepare head mask if needed
|
369 |
+
# 1.0 in head_mask indicate we keep the head
|
370 |
+
# attention_probs has shape bsz x n_heads x N x N
|
371 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
372 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
373 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
374 |
+
|
375 |
+
embedding_output = self.embeddings(
|
376 |
+
input_ids=input_ids,
|
377 |
+
position_ids=position_ids,
|
378 |
+
token_lang_ids=token_lang_ids,
|
379 |
+
token_script_ids=token_script_ids,
|
380 |
+
inputs_embeds=inputs_embeds,
|
381 |
+
past_key_values_length=past_key_values_length,
|
382 |
+
)
|
383 |
+
encoder_outputs = self.encoder(
|
384 |
+
embedding_output,
|
385 |
+
attention_mask=extended_attention_mask,
|
386 |
+
head_mask=head_mask,
|
387 |
+
encoder_hidden_states=encoder_hidden_states,
|
388 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
389 |
+
past_key_values=past_key_values,
|
390 |
+
use_cache=use_cache,
|
391 |
+
output_attentions=output_attentions,
|
392 |
+
output_hidden_states=output_hidden_states,
|
393 |
+
return_dict=return_dict,
|
394 |
+
)
|
395 |
+
sequence_output = encoder_outputs[0]
|
396 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
397 |
+
|
398 |
+
if not return_dict:
|
399 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
400 |
+
|
401 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
402 |
+
last_hidden_state=sequence_output,
|
403 |
+
pooler_output=pooled_output,
|
404 |
+
past_key_values=encoder_outputs.past_key_values,
|
405 |
+
hidden_states=encoder_outputs.hidden_states,
|
406 |
+
attentions=encoder_outputs.attentions,
|
407 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
408 |
+
)
|
409 |
+
|
410 |
+
|
411 |
+
@add_start_docstrings(
|
412 |
+
"""XLM-RoBERTa Model with a `language modeling` head on top.""",
|
413 |
+
XLM_ROBERTA_START_DOCSTRING,
|
414 |
+
)
|
415 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
416 |
+
class XLMRobertaDecoupledForMaskedLM(XLMRobertaPreTrainedModel):
|
417 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
418 |
+
|
419 |
+
def __init__(self, config):
|
420 |
+
super().__init__(config)
|
421 |
+
|
422 |
+
if config.is_decoder:
|
423 |
+
logger.warning(
|
424 |
+
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
425 |
+
"bi-directional self-attention."
|
426 |
+
)
|
427 |
+
|
428 |
+
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False)
|
429 |
+
self.lm_head = XLMRobertaDecoupledLMHead(config)
|
430 |
+
self.config = config
|
431 |
+
# Initialize weights and apply final processing
|
432 |
+
self.post_init()
|
433 |
+
|
434 |
+
def get_output_embeddings(self):
|
435 |
+
return self.lm_head.decoder
|
436 |
+
|
437 |
+
def set_output_embeddings(self, new_embeddings):
|
438 |
+
self.lm_head.decoder = new_embeddings
|
439 |
+
|
440 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
441 |
+
@add_code_sample_docstrings(
|
442 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
443 |
+
output_type=MaskedLMOutput,
|
444 |
+
config_class=_CONFIG_FOR_DOC,
|
445 |
+
mask="<mask>",
|
446 |
+
expected_output="' Paris'",
|
447 |
+
expected_loss=0.1,
|
448 |
+
)
|
449 |
+
def forward(
|
450 |
+
self,
|
451 |
+
input_ids: Optional[torch.LongTensor] = None,
|
452 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
453 |
+
token_lang_ids: Optional[torch.Tensor] = None,
|
454 |
+
token_script_ids: Optional[torch.Tensor] = None,
|
455 |
+
position_ids: Optional[torch.LongTensor] = None,
|
456 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
457 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
458 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
459 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
460 |
+
labels: Optional[torch.LongTensor] = None,
|
461 |
+
output_attentions: Optional[bool] = None,
|
462 |
+
output_hidden_states: Optional[bool] = None,
|
463 |
+
return_dict: Optional[bool] = None,
|
464 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
465 |
+
r"""
|
466 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
467 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
468 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
469 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
470 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
471 |
+
Used to hide legacy arguments that have been deprecated.
|
472 |
+
"""
|
473 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
474 |
+
|
475 |
+
outputs = self.roberta(
|
476 |
+
input_ids,
|
477 |
+
attention_mask=attention_mask,
|
478 |
+
token_lang_ids=token_lang_ids,
|
479 |
+
token_script_ids=token_script_ids,
|
480 |
+
position_ids=position_ids,
|
481 |
+
head_mask=head_mask,
|
482 |
+
inputs_embeds=inputs_embeds,
|
483 |
+
encoder_hidden_states=encoder_hidden_states,
|
484 |
+
encoder_attention_mask=encoder_attention_mask,
|
485 |
+
output_attentions=output_attentions,
|
486 |
+
output_hidden_states=output_hidden_states,
|
487 |
+
return_dict=return_dict,
|
488 |
+
)
|
489 |
+
sequence_output = outputs[0]
|
490 |
+
|
491 |
+
if self.config.use_lang_embedding:
|
492 |
+
if token_lang_ids is None:
|
493 |
+
raise ValueError("token_lang_ids cannot be None if use_lang_embedding is True")
|
494 |
+
token_lang_embeddings = self.roberta.embeddings.lang_type_embeddings(token_lang_ids)
|
495 |
+
else:
|
496 |
+
token_lang_embeddings = None
|
497 |
+
|
498 |
+
if self.config.use_script_embedding:
|
499 |
+
if token_script_ids is None:
|
500 |
+
raise ValueError("token_script_ids cannot be None if use_script_embedding is True")
|
501 |
+
token_script_embeddings = self.roberta.embeddings.script_type_embeddings(token_script_ids)
|
502 |
+
else:
|
503 |
+
token_script_embeddings = None
|
504 |
+
|
505 |
+
# select ouputs and labels
|
506 |
+
if labels is not None:
|
507 |
+
valid_tokens = labels != -100
|
508 |
+
valid_tokens = valid_tokens.unsqueeze(-1).expand_as(sequence_output)
|
509 |
+
filtered_output = torch.masked_select(sequence_output, valid_tokens).view(-1, sequence_output.size(-1))
|
510 |
+
if token_lang_embeddings is not None:
|
511 |
+
token_lang_embeddings = \
|
512 |
+
torch.masked_select(token_lang_embeddings, valid_tokens).view(-1, token_lang_embeddings.size(-1))
|
513 |
+
if token_script_embeddings is not None:
|
514 |
+
token_script_embeddings = \
|
515 |
+
torch.masked_select(token_script_embeddings, valid_tokens).view(-1, token_script_embeddings.size(-1))
|
516 |
+
filtered_labels = torch.masked_select(labels, labels != -100)
|
517 |
+
sequence_output = filtered_output
|
518 |
+
labels = filtered_labels
|
519 |
+
|
520 |
+
prediction_scores = self.lm_head(sequence_output, token_lang_embeddings, token_script_embeddings)
|
521 |
+
masked_lm_loss = None
|
522 |
+
if labels is not None:
|
523 |
+
# move labels to correct device to enable model parallelism
|
524 |
+
labels = labels.to(prediction_scores.device)
|
525 |
+
loss_fct = CrossEntropyLoss()
|
526 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
527 |
+
|
528 |
+
if not return_dict:
|
529 |
+
output = (prediction_scores,) + outputs[2:]
|
530 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
531 |
+
|
532 |
+
return MaskedLMOutput(
|
533 |
+
loss=masked_lm_loss,
|
534 |
+
logits=prediction_scores,
|
535 |
+
hidden_states=outputs.hidden_states,
|
536 |
+
attentions=outputs.attentions,
|
537 |
+
)
|
538 |
+
|
539 |
+
|
540 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead
|
541 |
+
class XLMRobertaDecoupledLMHead(nn.Module):
|
542 |
+
"""Roberta Head for masked language modeling."""
|
543 |
+
|
544 |
+
def __init__(self, config):
|
545 |
+
super().__init__()
|
546 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
547 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
548 |
+
|
549 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
550 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
551 |
+
self.decoder.bias = self.bias
|
552 |
+
self.config = config
|
553 |
+
|
554 |
+
def forward(self, features, language_embeddings, script_embeddings, **kwargs):
|
555 |
+
if language_embeddings is not None:
|
556 |
+
features = features + language_embeddings
|
557 |
+
if script_embeddings is not None:
|
558 |
+
features = features + script_embeddings
|
559 |
+
x = self.dense(features)
|
560 |
+
x = gelu(x)
|
561 |
+
x = self.layer_norm(x)
|
562 |
+
|
563 |
+
# project back to size of vocabulary with bias
|
564 |
+
x = self.decoder(x)
|
565 |
+
|
566 |
+
return x
|
567 |
+
|
568 |
+
def _tie_weights(self):
|
569 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
570 |
+
# For accelerate compatibility and to not break backward compatibility
|
571 |
+
if self.decoder.bias.device.type == "meta":
|
572 |
+
self.decoder.bias = self.bias
|
573 |
+
else:
|
574 |
+
self.bias = self.decoder.bias
|
575 |
+
|
576 |
+
|
577 |
+
@add_start_docstrings(
|
578 |
+
"""
|
579 |
+
XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
580 |
+
pooled output) e.g. for GLUE tasks.
|
581 |
+
""",
|
582 |
+
XLM_ROBERTA_START_DOCSTRING,
|
583 |
+
)
|
584 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
585 |
+
class XLMRobertaDecoupledForSequenceClassification(XLMRobertaPreTrainedModel):
|
586 |
+
def __init__(self, config):
|
587 |
+
super().__init__(config)
|
588 |
+
self.num_labels = config.num_labels
|
589 |
+
self.config = config
|
590 |
+
|
591 |
+
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False)
|
592 |
+
self.classifier = XLMRobertaClassificationHead(config)
|
593 |
+
|
594 |
+
# Initialize weights and apply final processing
|
595 |
+
self.post_init()
|
596 |
+
|
597 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
598 |
+
@add_code_sample_docstrings(
|
599 |
+
checkpoint="cardiffnlp/twitter-roberta-base-emotion",
|
600 |
+
output_type=SequenceClassifierOutput,
|
601 |
+
config_class=_CONFIG_FOR_DOC,
|
602 |
+
expected_output="'optimism'",
|
603 |
+
expected_loss=0.08,
|
604 |
+
)
|
605 |
+
def forward(
|
606 |
+
self,
|
607 |
+
input_ids: Optional[torch.LongTensor] = None,
|
608 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
609 |
+
token_lang_ids: Optional[torch.Tensor] = None,
|
610 |
+
token_script_ids: Optional[torch.Tensor] = None,
|
611 |
+
position_ids: Optional[torch.LongTensor] = None,
|
612 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
613 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
614 |
+
labels: Optional[torch.LongTensor] = None,
|
615 |
+
output_attentions: Optional[bool] = None,
|
616 |
+
output_hidden_states: Optional[bool] = None,
|
617 |
+
return_dict: Optional[bool] = None,
|
618 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
619 |
+
r"""
|
620 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
621 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
622 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
623 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
624 |
+
"""
|
625 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
626 |
+
|
627 |
+
outputs = self.roberta(
|
628 |
+
input_ids,
|
629 |
+
attention_mask=attention_mask,
|
630 |
+
token_lang_ids=token_lang_ids,
|
631 |
+
token_script_ids=token_script_ids,
|
632 |
+
position_ids=position_ids,
|
633 |
+
head_mask=head_mask,
|
634 |
+
inputs_embeds=inputs_embeds,
|
635 |
+
output_attentions=output_attentions,
|
636 |
+
output_hidden_states=output_hidden_states,
|
637 |
+
return_dict=return_dict,
|
638 |
+
)
|
639 |
+
sequence_output = outputs[0]
|
640 |
+
logits = self.classifier(sequence_output)
|
641 |
+
|
642 |
+
loss = None
|
643 |
+
if labels is not None:
|
644 |
+
# move labels to correct device to enable model parallelism
|
645 |
+
labels = labels.to(logits.device)
|
646 |
+
if self.config.problem_type is None:
|
647 |
+
if self.num_labels == 1:
|
648 |
+
self.config.problem_type = "regression"
|
649 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
650 |
+
self.config.problem_type = "single_label_classification"
|
651 |
+
else:
|
652 |
+
self.config.problem_type = "multi_label_classification"
|
653 |
+
|
654 |
+
if self.config.problem_type == "regression":
|
655 |
+
loss_fct = MSELoss()
|
656 |
+
if self.num_labels == 1:
|
657 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
658 |
+
else:
|
659 |
+
loss = loss_fct(logits, labels)
|
660 |
+
elif self.config.problem_type == "single_label_classification":
|
661 |
+
loss_fct = CrossEntropyLoss()
|
662 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
663 |
+
elif self.config.problem_type == "multi_label_classification":
|
664 |
+
loss_fct = BCEWithLogitsLoss()
|
665 |
+
loss = loss_fct(logits, labels)
|
666 |
+
|
667 |
+
if not return_dict:
|
668 |
+
output = (logits,) + outputs[2:]
|
669 |
+
return ((loss,) + output) if loss is not None else output
|
670 |
+
|
671 |
+
return SequenceClassifierOutput(
|
672 |
+
loss=loss,
|
673 |
+
logits=logits,
|
674 |
+
hidden_states=outputs.hidden_states,
|
675 |
+
attentions=outputs.attentions,
|
676 |
+
)
|
677 |
+
|
678 |
+
|
679 |
+
@add_start_docstrings(
|
680 |
+
"""
|
681 |
+
XLM-RoBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
|
682 |
+
a softmax) e.g. for RocStories/SWAG tasks.
|
683 |
+
""",
|
684 |
+
XLM_ROBERTA_START_DOCSTRING,
|
685 |
+
)
|
686 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
687 |
+
class XLMRobertaDecoupledForMultipleChoice(XLMRobertaPreTrainedModel):
|
688 |
+
def __init__(self, config):
|
689 |
+
super().__init__(config)
|
690 |
+
|
691 |
+
self.roberta = XLMRobertaDecoupledModel(config)
|
692 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
693 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
694 |
+
|
695 |
+
# Initialize weights and apply final processing
|
696 |
+
self.post_init()
|
697 |
+
|
698 |
+
@add_start_docstrings_to_model_forward(
|
699 |
+
XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
700 |
+
)
|
701 |
+
@add_code_sample_docstrings(
|
702 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
703 |
+
output_type=MultipleChoiceModelOutput,
|
704 |
+
config_class=_CONFIG_FOR_DOC,
|
705 |
+
)
|
706 |
+
def forward(
|
707 |
+
self,
|
708 |
+
input_ids: Optional[torch.LongTensor] = None,
|
709 |
+
token_lang_ids: Optional[torch.Tensor] = None,
|
710 |
+
token_script_ids: Optional[torch.Tensor] = None,
|
711 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
712 |
+
labels: Optional[torch.LongTensor] = None,
|
713 |
+
position_ids: Optional[torch.LongTensor] = None,
|
714 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
715 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
716 |
+
output_attentions: Optional[bool] = None,
|
717 |
+
output_hidden_states: Optional[bool] = None,
|
718 |
+
return_dict: Optional[bool] = None,
|
719 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
720 |
+
r"""
|
721 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
722 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
723 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
724 |
+
`input_ids` above)
|
725 |
+
"""
|
726 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
727 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
728 |
+
|
729 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
730 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
731 |
+
flat_token_lang_ids = token_lang_ids.view(-1, token_lang_ids.size(-1)) if token_lang_ids is not None else None
|
732 |
+
flat_token_script_ids = token_script_ids.view(-1, token_script_ids.size(
|
733 |
+
-1)) if token_script_ids is not None else None
|
734 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
735 |
+
flat_inputs_embeds = (
|
736 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
737 |
+
if inputs_embeds is not None
|
738 |
+
else None
|
739 |
+
)
|
740 |
+
|
741 |
+
outputs = self.roberta(
|
742 |
+
flat_input_ids,
|
743 |
+
position_ids=flat_position_ids,
|
744 |
+
token_lang_ids=flat_token_lang_ids,
|
745 |
+
token_script_ids=flat_token_script_ids,
|
746 |
+
attention_mask=flat_attention_mask,
|
747 |
+
head_mask=head_mask,
|
748 |
+
inputs_embeds=flat_inputs_embeds,
|
749 |
+
output_attentions=output_attentions,
|
750 |
+
output_hidden_states=output_hidden_states,
|
751 |
+
return_dict=return_dict,
|
752 |
+
)
|
753 |
+
pooled_output = outputs[1]
|
754 |
+
|
755 |
+
pooled_output = self.dropout(pooled_output)
|
756 |
+
logits = self.classifier(pooled_output)
|
757 |
+
reshaped_logits = logits.view(-1, num_choices)
|
758 |
+
|
759 |
+
loss = None
|
760 |
+
if labels is not None:
|
761 |
+
# move labels to correct device to enable model parallelism
|
762 |
+
labels = labels.to(reshaped_logits.device)
|
763 |
+
loss_fct = CrossEntropyLoss()
|
764 |
+
loss = loss_fct(reshaped_logits, labels)
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
output = (reshaped_logits,) + outputs[2:]
|
768 |
+
return ((loss,) + output) if loss is not None else output
|
769 |
+
|
770 |
+
return MultipleChoiceModelOutput(
|
771 |
+
loss=loss,
|
772 |
+
logits=reshaped_logits,
|
773 |
+
hidden_states=outputs.hidden_states,
|
774 |
+
attentions=outputs.attentions,
|
775 |
+
)
|
776 |
+
|
777 |
+
|
778 |
+
@add_start_docstrings(
|
779 |
+
"""
|
780 |
+
XLM-RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
781 |
+
for Named-Entity-Recognition (NER) tasks.
|
782 |
+
""",
|
783 |
+
XLM_ROBERTA_START_DOCSTRING,
|
784 |
+
)
|
785 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
786 |
+
class XLMRobertaDecoupledForTokenClassification(XLMRobertaPreTrainedModel):
|
787 |
+
def __init__(self, config):
|
788 |
+
super().__init__(config)
|
789 |
+
self.num_labels = config.num_labels
|
790 |
+
|
791 |
+
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False)
|
792 |
+
classifier_dropout = (
|
793 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
794 |
+
)
|
795 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
796 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
797 |
+
|
798 |
+
# Initialize weights and apply final processing
|
799 |
+
self.post_init()
|
800 |
+
|
801 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
802 |
+
@add_code_sample_docstrings(
|
803 |
+
checkpoint="Jean-Baptiste/roberta-large-ner-english",
|
804 |
+
output_type=TokenClassifierOutput,
|
805 |
+
config_class=_CONFIG_FOR_DOC,
|
806 |
+
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
|
807 |
+
expected_loss=0.01,
|
808 |
+
)
|
809 |
+
def forward(
|
810 |
+
self,
|
811 |
+
input_ids: Optional[torch.LongTensor] = None,
|
812 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
813 |
+
token_lang_ids: Optional[torch.Tensor] = None,
|
814 |
+
token_script_ids: Optional[torch.Tensor] = None,
|
815 |
+
position_ids: Optional[torch.LongTensor] = None,
|
816 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
817 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
818 |
+
labels: Optional[torch.LongTensor] = None,
|
819 |
+
output_attentions: Optional[bool] = None,
|
820 |
+
output_hidden_states: Optional[bool] = None,
|
821 |
+
return_dict: Optional[bool] = None,
|
822 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
823 |
+
r"""
|
824 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
826 |
+
"""
|
827 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
828 |
+
|
829 |
+
outputs = self.roberta(
|
830 |
+
input_ids,
|
831 |
+
attention_mask=attention_mask,
|
832 |
+
token_lang_ids=token_lang_ids,
|
833 |
+
token_script_ids=token_script_ids,
|
834 |
+
position_ids=position_ids,
|
835 |
+
head_mask=head_mask,
|
836 |
+
inputs_embeds=inputs_embeds,
|
837 |
+
output_attentions=output_attentions,
|
838 |
+
output_hidden_states=output_hidden_states,
|
839 |
+
return_dict=return_dict,
|
840 |
+
)
|
841 |
+
|
842 |
+
sequence_output = outputs[0]
|
843 |
+
|
844 |
+
sequence_output = self.dropout(sequence_output)
|
845 |
+
logits = self.classifier(sequence_output)
|
846 |
+
|
847 |
+
loss = None
|
848 |
+
if labels is not None:
|
849 |
+
# move labels to correct device to enable model parallelism
|
850 |
+
labels = labels.to(logits.device)
|
851 |
+
loss_fct = CrossEntropyLoss()
|
852 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
853 |
+
|
854 |
+
if not return_dict:
|
855 |
+
output = (logits,) + outputs[2:]
|
856 |
+
return ((loss,) + output) if loss is not None else output
|
857 |
+
|
858 |
+
return TokenClassifierOutput(
|
859 |
+
loss=loss,
|
860 |
+
logits=logits,
|
861 |
+
hidden_states=outputs.hidden_states,
|
862 |
+
attentions=outputs.attentions,
|
863 |
+
)
|
864 |
+
|
865 |
+
|
866 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
|
867 |
+
class XLMRobertaClassificationHead(nn.Module):
|
868 |
+
"""Head for sentence-level classification tasks."""
|
869 |
+
|
870 |
+
def __init__(self, config):
|
871 |
+
super().__init__()
|
872 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
873 |
+
classifier_dropout = (
|
874 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
875 |
+
)
|
876 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
877 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
878 |
+
|
879 |
+
def forward(self, features, **kwargs):
|
880 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
881 |
+
x = self.dropout(x)
|
882 |
+
x = self.dense(x)
|
883 |
+
x = torch.tanh(x)
|
884 |
+
x = self.dropout(x)
|
885 |
+
x = self.out_proj(x)
|
886 |
+
return x
|
887 |
+
|
888 |
+
|
889 |
+
@add_start_docstrings(
|
890 |
+
"""
|
891 |
+
XLM-RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
892 |
+
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
893 |
+
""",
|
894 |
+
XLM_ROBERTA_START_DOCSTRING,
|
895 |
+
)
|
896 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
897 |
+
class XLMRobertaForQuestionAnswering(XLMRobertaPreTrainedModel):
|
898 |
+
def __init__(self, config):
|
899 |
+
super().__init__(config)
|
900 |
+
self.num_labels = config.num_labels
|
901 |
+
|
902 |
+
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False)
|
903 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
904 |
+
|
905 |
+
# Initialize weights and apply final processing
|
906 |
+
self.post_init()
|
907 |
+
|
908 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
909 |
+
@add_code_sample_docstrings(
|
910 |
+
checkpoint="deepset/roberta-base-squad2",
|
911 |
+
output_type=QuestionAnsweringModelOutput,
|
912 |
+
config_class=_CONFIG_FOR_DOC,
|
913 |
+
expected_output="' puppet'",
|
914 |
+
expected_loss=0.86,
|
915 |
+
)
|
916 |
+
def forward(
|
917 |
+
self,
|
918 |
+
input_ids: Optional[torch.LongTensor] = None,
|
919 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
920 |
+
token_lang_ids: Optional[torch.Tensor] = None,
|
921 |
+
token_script_ids: Optional[torch.Tensor] = None,
|
922 |
+
position_ids: Optional[torch.LongTensor] = None,
|
923 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
924 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
925 |
+
start_positions: Optional[torch.LongTensor] = None,
|
926 |
+
end_positions: Optional[torch.LongTensor] = None,
|
927 |
+
output_attentions: Optional[bool] = None,
|
928 |
+
output_hidden_states: Optional[bool] = None,
|
929 |
+
return_dict: Optional[bool] = None,
|
930 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
931 |
+
r"""
|
932 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
933 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
934 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
935 |
+
are not taken into account for computing the loss.
|
936 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
937 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
938 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
939 |
+
are not taken into account for computing the loss.
|
940 |
+
"""
|
941 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
942 |
+
|
943 |
+
outputs = self.roberta(
|
944 |
+
input_ids,
|
945 |
+
attention_mask=attention_mask,
|
946 |
+
token_lang_ids=token_lang_ids,
|
947 |
+
token_script_ids=token_script_ids,
|
948 |
+
position_ids=position_ids,
|
949 |
+
head_mask=head_mask,
|
950 |
+
inputs_embeds=inputs_embeds,
|
951 |
+
output_attentions=output_attentions,
|
952 |
+
output_hidden_states=output_hidden_states,
|
953 |
+
return_dict=return_dict,
|
954 |
+
)
|
955 |
+
|
956 |
+
sequence_output = outputs[0]
|
957 |
+
|
958 |
+
logits = self.qa_outputs(sequence_output)
|
959 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
960 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
961 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
962 |
+
|
963 |
+
total_loss = None
|
964 |
+
if start_positions is not None and end_positions is not None:
|
965 |
+
# If we are on multi-GPU, split add a dimension
|
966 |
+
if len(start_positions.size()) > 1:
|
967 |
+
start_positions = start_positions.squeeze(-1)
|
968 |
+
if len(end_positions.size()) > 1:
|
969 |
+
end_positions = end_positions.squeeze(-1)
|
970 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
971 |
+
ignored_index = start_logits.size(1)
|
972 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
973 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
974 |
+
|
975 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
976 |
+
start_loss = loss_fct(start_logits, start_positions)
|
977 |
+
end_loss = loss_fct(end_logits, end_positions)
|
978 |
+
total_loss = (start_loss + end_loss) / 2
|
979 |
+
|
980 |
+
if not return_dict:
|
981 |
+
output = (start_logits, end_logits) + outputs[2:]
|
982 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
983 |
+
|
984 |
+
return QuestionAnsweringModelOutput(
|
985 |
+
loss=total_loss,
|
986 |
+
start_logits=start_logits,
|
987 |
+
end_logits=end_logits,
|
988 |
+
hidden_states=outputs.hidden_states,
|
989 |
+
attentions=outputs.attentions,
|
990 |
+
)
|
991 |
+
|
992 |
+
|
993 |
+
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
994 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
995 |
+
"""
|
996 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
997 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
998 |
+
|
999 |
+
Args:
|
1000 |
+
x: torch.Tensor x:
|
1001 |
+
|
1002 |
+
Returns: torch.Tensor
|
1003 |
+
"""
|
1004 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1005 |
+
mask = input_ids.ne(padding_idx).int()
|
1006 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1007 |
+
return incremental_indices.long() + padding_idx
|
1008 |
+
|