File size: 5,744 Bytes
05ea8c6
 
 
 
3062cf9
05ea8c6
 
 
bc57f4b
05ea8c6
 
 
 
 
 
 
bc57f4b
3062cf9
05ea8c6
 
 
 
 
 
 
3062cf9
bc57f4b
3062cf9
 
bc57f4b
3062cf9
 
bc57f4b
3062cf9
 
bc57f4b
3062cf9
05ea8c6
 
 
 
 
 
 
 
 
bc57f4b
 
 
 
 
05ea8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc57f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ea8c6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: google/t5-efficient-tiny
datasets:
- generator
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: salt_language_Classification
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: generator
      type: generator
      config: default
      split: train
      args: default
    metrics:
    - type: accuracy
      value: 0.9781586021505376
      name: Accuracy
    - type: precision
      value: 0.9786579334649282
      name: Precision
    - type: recall
      value: 0.9781586021505376
      name: Recall
    - type: f1
      value: 0.97818824673623
      name: F1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# salt_language_Classification

This model is a fine-tuned version of [google/t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0615
- Accuracy: 0.9782
- Precision: 0.9787
- Recall: 0.9782
- F1: 0.9782

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 20000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.2011        | 0.025 | 500   | 0.4979          | 0.8733   | 0.9001    | 0.8733 | 0.8714 |
| 0.234         | 0.05  | 1000  | 0.1886          | 0.9345   | 0.9354    | 0.9345 | 0.9345 |
| 0.2083        | 0.075 | 1500  | 0.1833          | 0.9328   | 0.9391    | 0.9328 | 0.9328 |
| 0.1838        | 0.1   | 2000  | 0.1457          | 0.9476   | 0.9479    | 0.9476 | 0.9475 |
| 0.1737        | 0.125 | 2500  | 0.1659          | 0.9409   | 0.9438    | 0.9409 | 0.9411 |
| 0.1591        | 0.15  | 3000  | 0.1450          | 0.9516   | 0.9524    | 0.9516 | 0.9517 |
| 0.1571        | 0.175 | 3500  | 0.1351          | 0.9459   | 0.9485    | 0.9459 | 0.9461 |
| 0.1513        | 0.2   | 4000  | 0.1510          | 0.9456   | 0.9515    | 0.9456 | 0.9460 |
| 0.1439        | 0.225 | 4500  | 0.1339          | 0.9546   | 0.9578    | 0.9546 | 0.9547 |
| 0.1394        | 0.25  | 5000  | 0.1052          | 0.9657   | 0.9658    | 0.9657 | 0.9656 |
| 0.1472        | 0.275 | 5500  | 0.1088          | 0.9610   | 0.9629    | 0.9610 | 0.9609 |
| 0.1385        | 0.3   | 6000  | 0.0792          | 0.9694   | 0.9696    | 0.9694 | 0.9694 |
| 0.1349        | 0.325 | 6500  | 0.1063          | 0.9610   | 0.9632    | 0.9610 | 0.9613 |
| 0.1215        | 0.35  | 7000  | 0.0855          | 0.9688   | 0.9694    | 0.9688 | 0.9687 |
| 0.133         | 0.375 | 7500  | 0.1049          | 0.9630   | 0.9640    | 0.9630 | 0.9630 |
| 0.1226        | 0.4   | 8000  | 0.0938          | 0.9667   | 0.9675    | 0.9667 | 0.9667 |
| 0.1222        | 0.425 | 8500  | 0.1134          | 0.9570   | 0.9604    | 0.9570 | 0.9573 |
| 0.1165        | 0.45  | 9000  | 0.0997          | 0.9688   | 0.9697    | 0.9688 | 0.9687 |
| 0.1174        | 0.475 | 9500  | 0.1002          | 0.9661   | 0.9680    | 0.9661 | 0.9659 |
| 0.1165        | 0.5   | 10000 | 0.0807          | 0.9728   | 0.9728    | 0.9728 | 0.9728 |
| 0.1065        | 0.525 | 10500 | 0.0750          | 0.9745   | 0.9754    | 0.9745 | 0.9746 |
| 0.1089        | 0.55  | 11000 | 0.0896          | 0.9688   | 0.9703    | 0.9688 | 0.9689 |
| 0.1125        | 0.575 | 11500 | 0.0632          | 0.9782   | 0.9787    | 0.9782 | 0.9782 |
| 0.11          | 0.6   | 12000 | 0.0775          | 0.9691   | 0.9708    | 0.9691 | 0.9692 |
| 0.1028        | 0.625 | 12500 | 0.0833          | 0.9698   | 0.9708    | 0.9698 | 0.9698 |
| 0.1052        | 0.65  | 13000 | 0.0663          | 0.9751   | 0.9755    | 0.9751 | 0.9751 |
| 0.1068        | 0.675 | 13500 | 0.0648          | 0.9772   | 0.9774    | 0.9772 | 0.9772 |
| 0.1029        | 0.7   | 14000 | 0.0962          | 0.9688   | 0.9706    | 0.9688 | 0.9689 |
| 0.1014        | 0.725 | 14500 | 0.0686          | 0.9772   | 0.9775    | 0.9772 | 0.9771 |
| 0.0978        | 0.75  | 15000 | 0.0802          | 0.9745   | 0.9752    | 0.9745 | 0.9745 |
| 0.095         | 0.775 | 15500 | 0.0646          | 0.9758   | 0.9763    | 0.9758 | 0.9758 |
| 0.0996        | 0.8   | 16000 | 0.0711          | 0.9758   | 0.9761    | 0.9758 | 0.9758 |
| 0.0967        | 0.825 | 16500 | 0.0683          | 0.9761   | 0.9768    | 0.9761 | 0.9761 |
| 0.0939        | 0.85  | 17000 | 0.0572          | 0.9792   | 0.9795    | 0.9792 | 0.9791 |
| 0.0966        | 0.875 | 17500 | 0.0527          | 0.9792   | 0.9794    | 0.9792 | 0.9791 |
| 0.0925        | 0.9   | 18000 | 0.0581          | 0.9798   | 0.9802    | 0.9798 | 0.9799 |
| 0.0945        | 0.925 | 18500 | 0.0693          | 0.9768   | 0.9776    | 0.9768 | 0.9768 |
| 0.0923        | 0.95  | 19000 | 0.0615          | 0.9785   | 0.9790    | 0.9785 | 0.9785 |
| 0.0896        | 0.975 | 19500 | 0.0643          | 0.9758   | 0.9766    | 0.9758 | 0.9758 |
| 0.0979        | 1.0   | 20000 | 0.0619          | 0.9765   | 0.9770    | 0.9765 | 0.9765 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1