|
import torch |
|
import numpy as np |
|
import jax |
|
import jax.numpy as jnp |
|
from transformers import AutoTokenizer |
|
from transformers import FlaxGPTNeoForCausalLM |
|
from transformers import GPTNeoForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained(".") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model_fx = FlaxGPTNeoForCausalLM.from_pretrained(".") |
|
|
|
|
|
|
|
|
|
model_pt = GPTNeoForCausalLM.from_pretrained(".", from_flax=True) |
|
model_pt.save_pretrained(".") |
|
input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32) |
|
input_ids_pt = torch.tensor(input_ids) |
|
logits_pt = model_pt(input_ids_pt).logits |
|
print(logits_pt) |
|
logits_fx = model_fx(input_ids).logits |
|
print(logits_fx) |