|
from decord import VideoReader,cpu |
|
import os |
|
import numpy as np |
|
import cv2 |
|
import dlib |
|
import face_recognition |
|
from tqdm import tqdm |
|
|
|
def real_or_fake(prediction): |
|
return {0: "REAL", 1: "FAKE"}[prediction ^ 1] |
|
|
|
|
|
def real_or_fake_thres(probability, threshold=0.2): |
|
return "FAKE" if probability >= threshold else "REAL" |
|
|
|
|
|
def face_rec(frames, p=None, klass=None): |
|
temp_face = np.zeros((len(frames), 224, 224, 3), dtype=np.uint8) |
|
count = 0 |
|
mod = "cnn" if dlib.DLIB_USE_CUDA else "hog" |
|
|
|
for _, frame in tqdm(enumerate(frames), total=len(frames)): |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
face_locations = face_recognition.face_locations( |
|
frame, number_of_times_to_upsample=0, model=mod |
|
) |
|
|
|
for face_location in face_locations: |
|
if count < len(frames): |
|
top, right, bottom, left = face_location |
|
face_image = frame[top:bottom, left:right] |
|
face_image = cv2.resize( |
|
face_image, (224, 224), interpolation=cv2.INTER_AREA |
|
) |
|
face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB) |
|
|
|
temp_face[count] = face_image |
|
count += 1 |
|
else: |
|
break |
|
|
|
return ([], 0) if count == 0 else (temp_face[:count], count) |
|
|
|
|
|
def extract_frames(video_file, frames_nums=15): |
|
vr = VideoReader(video_file, ctx=cpu(0)) |
|
|
|
step_size = max(1, len(vr) // frames_nums) |
|
return vr.get_batch( |
|
list(range(0, len(vr), step_size))[:frames_nums] |
|
).asnumpy() |
|
|
|
def is_video(vid): |
|
return os.path.isfile(vid) and vid.endswith( |
|
tuple([".avi", ".mp4", ".mpg", ".mpeg", ".mov"]) |
|
) |
|
|
|
def is_image(img): |
|
return os.path.isfile(img) and img.endswith( |
|
tuple([".jpg", ".jpeg", ".png", ".webp"]) |
|
) |
|
|
|
def set_result(): |
|
return { |
|
"video": { |
|
"name": [], |
|
"pred": [], |
|
"klass": [], |
|
"pred_label": [], |
|
"correct_label": [], |
|
} |
|
} |
|
|
|
def store_result( |
|
result, filename, y, y_val, klass, correct_label=None, compression=None |
|
): |
|
result["video"]["name"].append(filename) |
|
result["video"]["pred"].append(y_val) |
|
result["video"]["klass"].append(klass.lower()) |
|
result["video"]["pred_label"].append(real_or_fake(y)) |
|
|
|
if correct_label is not None: |
|
result["video"]["correct_label"].append(correct_label) |
|
|
|
if compression is not None: |
|
result["video"]["compression"].append(compression) |
|
|
|
return result |