File size: 2,173 Bytes
1748798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language:
- zh
- ko
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: zhko_mbartLarge_50p_tokenize_run1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zhko_mbartLarge_50p_tokenize_run1
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8482
- Bleu: 30.6847
- Gen Len: 14.6895
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.6487 | 1.0 | 2786 | 1.5519 | 26.5985 | 15.0925 |
| 1.1763 | 2.0 | 5572 | 1.4910 | 29.1024 | 14.8538 |
| 0.8697 | 3.0 | 8358 | 1.5510 | 29.5842 | 14.7611 |
| 0.6221 | 4.0 | 11144 | 1.6445 | 29.6959 | 14.7091 |
| 0.4444 | 5.0 | 13930 | 1.7176 | 29.6231 | 14.6204 |
| 0.3137 | 6.0 | 16716 | 1.7916 | 29.6666 | 14.524 |
| 0.2303 | 7.0 | 19502 | 1.8368 | 30.4697 | 14.5571 |
| 0.1888 | 8.0 | 22288 | 1.8482 | 30.6847 | 14.6895 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|