File size: 2,221 Bytes
aed8164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language:
- en
- ko
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbartLarge_mid_en-ko1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbartLarge_mid_en-ko1
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4106
- Bleu: 13.2758
- Gen Len: 16.235
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.5855 | 1.12 | 1500 | 1.5215 | 11.5186 | 16.204 |
| 1.4287 | 2.24 | 3000 | 1.4549 | 12.2855 | 16.1497 |
| 1.2937 | 3.37 | 4500 | 1.4250 | 12.6484 | 16.2152 |
| 1.2444 | 4.49 | 6000 | 1.4165 | 13.0063 | 16.0749 |
| 1.1335 | 5.61 | 7500 | 1.4106 | 13.2758 | 16.235 |
| 1.0508 | 6.73 | 9000 | 1.4243 | 13.0601 | 15.86 |
| 0.9462 | 7.86 | 10500 | 1.4497 | 13.0828 | 16.0475 |
| 0.8464 | 8.98 | 12000 | 1.4692 | 13.5878 | 15.9308 |
| 0.6995 | 10.1 | 13500 | 1.5572 | 13.1085 | 15.9906 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|