yeounyi commited on
Commit
d34d367
·
1 Parent(s): 3012483

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.87 +/- 0.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a747546c56b23eb59ea2a417e51e1fd42415382933b7ab7e6910826cd7bc41a1
3
+ size 108037
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e27df163d90>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e27df16ce40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1690010317732583616,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjbzMPudU0Dx4yCA/jbzMPudU0Dx4yCA/jbzMPudU0Dx4yCA/jbzMPudU0Dx4yCA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOKLv3U5tL9biCa/SGCRP7+Bcz8oXlQ/W6a3v9B2W7+zj3M+NMQWP9v+Z7/Zb10/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.39987603 0.02543111 0.6280589 ]\n [0.39987603 0.02543111 0.6280589 ]\n [0.39987603 0.02543111 0.6280589 ]\n [0.39987603 0.02543111 0.6280589 ]]",
38
+ "desired_goal": "[[-1.0928478 -1.4080034 -0.6505181 ]\n [ 1.1357508 0.9511985 0.8295617 ]\n [-1.4347643 -0.8572817 0.23785286]\n [ 0.5889313 -0.90623254 0.8649879 ]]",
39
+ "observation": "[[0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]\n [0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]\n [0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]\n [0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7LHEva0+GL4WhDk+O03hPX1HEb3rlZo9um3+Pac3Vz2Ysuw98FHOvOUva71TmDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.09604248 -0.14867659 0.18116793]\n [ 0.11001059 -0.03546857 0.07548126]\n [ 0.12423272 0.05254331 0.11557502]\n [-0.02518556 -0.05741872 0.17636232]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UbKFkkbCsCUhpRSlIwBbJRLMowBdJRHQKYc5kS26TZ1fZQoaAZoCWgPQwj+nIL8bMQOwJSGlFKUaBVLMmgWR0CmHIyr5qM4dX2UKGgGaAloD0MIKChFK/cCE8CUhpRSlGgVSzJoFkdAphw6MvRJE3V9lChoBmgJaA9DCG5t4XmpGA/AlIaUUpRoFUsyaBZHQKYb4cd5prV1fZQoaAZoCWgPQwgm5IOezSoBwJSGlFKUaBVLMmgWR0CmHlq0+kgwdX2UKGgGaAloD0MIEHnL1Y8NDcCUhpRSlGgVSzJoFkdAph4BUFSsKnV9lChoBmgJaA9DCHCwNzEkBwzAlIaUUpRoFUsyaBZHQKYdrwT/Q0J1fZQoaAZoCWgPQwgI6SlyiJgHwJSGlFKUaBVLMmgWR0CmHVcZLqUvdX2UKGgGaAloD0MIh2wgXWy6CsCUhpRSlGgVSzJoFkdAph961y/9HnV9lChoBmgJaA9DCMjtl09W3BHAlIaUUpRoFUsyaBZHQKYfIRg7YCh1fZQoaAZoCWgPQwga4IJsWV4GwJSGlFKUaBVLMmgWR0CmHs4k3S8bdX2UKGgGaAloD0MIDOnwEMavBsCUhpRSlGgVSzJoFkdAph51bA1vVHV9lChoBmgJaA9DCBsOSwM/CgDAlIaUUpRoFUsyaBZHQKYgVj+aScN1fZQoaAZoCWgPQwjuX1lpUloTwJSGlFKUaBVLMmgWR0CmH/w+UyHmdX2UKGgGaAloD0MIqio0EMuWG8CUhpRSlGgVSzJoFkdAph+pJTVDr3V9lChoBmgJaA9DCBNHHogsshTAlIaUUpRoFUsyaBZHQKYfUE5hjON1fZQoaAZoCWgPQwiIZMix9cwIwJSGlFKUaBVLMmgWR0CmITdJBgNPdX2UKGgGaAloD0MI0PHR4oxhCMCUhpRSlGgVSzJoFkdApiDdmL9/BnV9lChoBmgJaA9DCCV6GcVyy/2/lIaUUpRoFUsyaBZHQKYgiornTy91fZQoaAZoCWgPQwjP86eN6jQYwJSGlFKUaBVLMmgWR0CmIDGxdIGydX2UKGgGaAloD0MIUrezrzxoC8CUhpRSlGgVSzJoFkdApiIRimVJMHV9lChoBmgJaA9DCKTk1TkG5BLAlIaUUpRoFUsyaBZHQKYhuBMBZIR1fZQoaAZoCWgPQwjcm98w0WANwJSGlFKUaBVLMmgWR0CmIWUD2alUdX2UKGgGaAloD0MIp+hILv9BDMCUhpRSlGgVSzJoFkdApiEMNx2jf3V9lChoBmgJaA9DCJVm8zgM5v2/lIaUUpRoFUsyaBZHQKYi87Ackt51fZQoaAZoCWgPQwg3qP3WTrQPwJSGlFKUaBVLMmgWR0CmIpm7rcCYdX2UKGgGaAloD0MIsD2zJEDNB8CUhpRSlGgVSzJoFkdApiJGwgTyrnV9lChoBmgJaA9DCNhIEoQr8BHAlIaUUpRoFUsyaBZHQKYh7fO2RaJ1fZQoaAZoCWgPQwireCPzyD8GwJSGlFKUaBVLMmgWR0CmI9D7655JdX2UKGgGaAloD0MIdNNmnIZoCcCUhpRSlGgVSzJoFkdApiN2+bmU4nV9lChoBmgJaA9DCKEvvf25KAXAlIaUUpRoFUsyaBZHQKYjI9alk6N1fZQoaAZoCWgPQwhQqRJlb8kEwJSGlFKUaBVLMmgWR0CmIssGorFwdX2UKGgGaAloD0MIdNGQ8Sj1AsCUhpRSlGgVSzJoFkdApiS29WZJCnV9lChoBmgJaA9DCAIOoUrNbhbAlIaUUpRoFUsyaBZHQKYkXPLPldV1fZQoaAZoCWgPQwhPAwZJn3YRwJSGlFKUaBVLMmgWR0CmJAnk1dgOdX2UKGgGaAloD0MIPIbHfhYrDcCUhpRSlGgVSzJoFkdApiOxo4+8oXV9lChoBmgJaA9DCFGFP8ObdQnAlIaUUpRoFUsyaBZHQKYlk9Mbm2d1fZQoaAZoCWgPQwiYFvVJ7nD+v5SGlFKUaBVLMmgWR0CmJTn+ZPVNdX2UKGgGaAloD0MIbf/KSpMiEsCUhpRSlGgVSzJoFkdApiTm76Hj63V9lChoBmgJaA9DCJF9kGXBpAfAlIaUUpRoFUsyaBZHQKYkjiWE9Md1fZQoaAZoCWgPQwjJq3MMyF4JwJSGlFKUaBVLMmgWR0CmJnNn5BTodX2UKGgGaAloD0MItU/HYwYqA8CUhpRSlGgVSzJoFkdApiYZc3VConV9lChoBmgJaA9DCOHUB5J3Dv+/lIaUUpRoFUsyaBZHQKYlxl/Yrax1fZQoaAZoCWgPQwgIrBxaZLsSwJSGlFKUaBVLMmgWR0CmJW31rZandX2UKGgGaAloD0MI+Z6RCI0wEMCUhpRSlGgVSzJoFkdApidTxsl9jXV9lChoBmgJaA9DCK7Zykv+xwbAlIaUUpRoFUsyaBZHQKYm+fdRBNV1fZQoaAZoCWgPQwi8ehUZHfASwJSGlFKUaBVLMmgWR0CmJqb52yLRdX2UKGgGaAloD0MI5ZmXw+57CMCUhpRSlGgVSzJoFkdApiZOLUCq63V9lChoBmgJaA9DCCRHOgMjb/y/lIaUUpRoFUsyaBZHQKYoMiLVFx51fZQoaAZoCWgPQwhig4WTNL8JwJSGlFKUaBVLMmgWR0CmJ9hvrGBGdX2UKGgGaAloD0MIbNCX3v68B8CUhpRSlGgVSzJoFkdApieFcnmaIHV9lChoBmgJaA9DCPJ8BtSbUQfAlIaUUpRoFUsyaBZHQKYnLKA8Swp1fZQoaAZoCWgPQwiNnIU97bAAwJSGlFKUaBVLMmgWR0CmKR3DvVmSdX2UKGgGaAloD0MIbcX+snvyBsCUhpRSlGgVSzJoFkdApijD4L1EmnV9lChoBmgJaA9DCN0/FqJDYAfAlIaUUpRoFUsyaBZHQKYocPhhpg11fZQoaAZoCWgPQwhm2ZPA5owQwJSGlFKUaBVLMmgWR0CmKBgyM1jzdX2UKGgGaAloD0MI6pYd4h92DcCUhpRSlGgVSzJoFkdApioC8OCoTHV9lChoBmgJaA9DCDUmxFxS9f6/lIaUUpRoFUsyaBZHQKYpqP8Q7Ld1fZQoaAZoCWgPQwi1bRgFwYMPwJSGlFKUaBVLMmgWR0CmKVXumaYvdX2UKGgGaAloD0MI7N0f71VLCsCUhpRSlGgVSzJoFkdApij9GmUGFHV9lChoBmgJaA9DCPt2EhH+BQPAlIaUUpRoFUsyaBZHQKYq66ClJpZ1fZQoaAZoCWgPQwgMzXUaaQkYwJSGlFKUaBVLMmgWR0CmKpGyon8bdX2UKGgGaAloD0MI2qoksg+SEsCUhpRSlGgVSzJoFkdApio+oDPnjnV9lChoBmgJaA9DCDhIiPIFTQbAlIaUUpRoFUsyaBZHQKYp5eRgZ0l1fZQoaAZoCWgPQwhNhA1PrxQPwJSGlFKUaBVLMmgWR0CmK95TZQHidX2UKGgGaAloD0MIXU90XfjhAcCUhpRSlGgVSzJoFkdApiuEZ3s5XHV9lChoBmgJaA9DCC0iiskbAADAlIaUUpRoFUsyaBZHQKYrMVhTfix1fZQoaAZoCWgPQwhCs+veisQFwJSGlFKUaBVLMmgWR0CmKtiRfWtmdX2UKGgGaAloD0MIKxTpfk5BB8CUhpRSlGgVSzJoFkdApizAis4kvHV9lChoBmgJaA9DCDRKl/4lORHAlIaUUpRoFUsyaBZHQKYsZomG/N91fZQoaAZoCWgPQwi2aWyvBd0PwJSGlFKUaBVLMmgWR0CmLBOzIFNddX2UKGgGaAloD0MIzNHj9zZ9AsCUhpRSlGgVSzJoFkdApiu626TW5HV9lChoBmgJaA9DCK7UsyCUhxPAlIaUUpRoFUsyaBZHQKYtnQN0/4Z1fZQoaAZoCWgPQwjQKcjPRu4SwJSGlFKUaBVLMmgWR0CmLUMbFS88dX2UKGgGaAloD0MIb57qkJtBEMCUhpRSlGgVSzJoFkdApizwfdRBNXV9lChoBmgJaA9DCBppqbwdAQXAlIaUUpRoFUsyaBZHQKYsmBYFJQN1fZQoaAZoCWgPQwiKWS+GckIEwJSGlFKUaBVLMmgWR0CmLnq+rU9ZdX2UKGgGaAloD0MIV87eGW0VG8CUhpRSlGgVSzJoFkdApi4gumJm/XV9lChoBmgJaA9DCHUg66nVVwrAlIaUUpRoFUsyaBZHQKYtzaufVZt1fZQoaAZoCWgPQwh/MzFdiBUMwJSGlFKUaBVLMmgWR0CmLXTlT3qSdX2UKGgGaAloD0MIjsni/iPzBcCUhpRSlGgVSzJoFkdApi9aElE7XHV9lChoBmgJaA9DCHpSJjW0URLAlIaUUpRoFUsyaBZHQKYvAExqO951fZQoaAZoCWgPQwhC0NGqlhQHwJSGlFKUaBVLMmgWR0CmLq1JlJ6IdX2UKGgGaAloD0MIOzQsRl2rEcCUhpRSlGgVSzJoFkdApi5UkhRqGnV9lChoBmgJaA9DCFad1QJ7nBnAlIaUUpRoFUsyaBZHQKYwQNwzch11fZQoaAZoCWgPQwiMMbCO4ycFwJSGlFKUaBVLMmgWR0CmL+bf51vEdX2UKGgGaAloD0MImzdOCvMe/b+UhpRSlGgVSzJoFkdApi+T4agmJHV9lChoBmgJaA9DCF2MgXUcPwTAlIaUUpRoFUsyaBZHQKYvOzv7WNF1fZQoaAZoCWgPQwiEnWLVIEwGwJSGlFKUaBVLMmgWR0CmMSM2vStvdX2UKGgGaAloD0MIotKImX0eCcCUhpRSlGgVSzJoFkdApjDJPqLS/nV9lChoBmgJaA9DCKxvYHKjKAnAlIaUUpRoFUsyaBZHQKYwdix3V091fZQoaAZoCWgPQwgdAHFXryIKwJSGlFKUaBVLMmgWR0CmMB1aW5YpdX2UKGgGaAloD0MIG4LjMm7KEMCUhpRSlGgVSzJoFkdApjIG8wpOOHV9lChoBmgJaA9DCMU7wJMWjhDAlIaUUpRoFUsyaBZHQKYxrOnl4kh1fZQoaAZoCWgPQwiiQ+BIoIEKwJSGlFKUaBVLMmgWR0CmMVnmig01dX2UKGgGaAloD0MIzEBl/PvMEcCUhpRSlGgVSzJoFkdApjEBL/S6UnV9lChoBmgJaA9DCJkqGJXU6QTAlIaUUpRoFUsyaBZHQKYy6is4ku91fZQoaAZoCWgPQwg3OXzSidQWwJSGlFKUaBVLMmgWR0CmMpA/9pAVdX2UKGgGaAloD0MI+IxEaATrEsCUhpRSlGgVSzJoFkdApjI9LeyiVXV9lChoBmgJaA9DCI5AvK5f8A7AlIaUUpRoFUsyaBZHQKYx5EdeY2N1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c59639e3d90b52b41daeba42cf9abdbc09bb1afb259003ed70df00936a41500
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:516e49424a6b2fbea041c2e291b82de97545d331d5d6e69ddfdf5e1f322e2268
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e27df163d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e27df16ce40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690010317732583616, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjbzMPudU0Dx4yCA/jbzMPudU0Dx4yCA/jbzMPudU0Dx4yCA/jbzMPudU0Dx4yCA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOKLv3U5tL9biCa/SGCRP7+Bcz8oXlQ/W6a3v9B2W7+zj3M+NMQWP9v+Z7/Zb10/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuNvMw+51TQPHjIID/xFhM8DUaLOmBqZjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39987603 0.02543111 0.6280589 ]\n [0.39987603 0.02543111 0.6280589 ]\n [0.39987603 0.02543111 0.6280589 ]\n [0.39987603 0.02543111 0.6280589 ]]", "desired_goal": "[[-1.0928478 -1.4080034 -0.6505181 ]\n [ 1.1357508 0.9511985 0.8295617 ]\n [-1.4347643 -0.8572817 0.23785286]\n [ 0.5889313 -0.90623254 0.8649879 ]]", "observation": "[[0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]\n [0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]\n [0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]\n [0.39987603 0.02543111 0.6280589 0.00897764 0.00106257 0.00351586]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7LHEva0+GL4WhDk+O03hPX1HEb3rlZo9um3+Pac3Vz2Ysuw98FHOvOUva71TmDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09604248 -0.14867659 0.18116793]\n [ 0.11001059 -0.03546857 0.07548126]\n [ 0.12423272 0.05254331 0.11557502]\n [-0.02518556 -0.05741872 0.17636232]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4UbKFkkbCsCUhpRSlIwBbJRLMowBdJRHQKYc5kS26TZ1fZQoaAZoCWgPQwj+nIL8bMQOwJSGlFKUaBVLMmgWR0CmHIyr5qM4dX2UKGgGaAloD0MIKChFK/cCE8CUhpRSlGgVSzJoFkdAphw6MvRJE3V9lChoBmgJaA9DCG5t4XmpGA/AlIaUUpRoFUsyaBZHQKYb4cd5prV1fZQoaAZoCWgPQwgm5IOezSoBwJSGlFKUaBVLMmgWR0CmHlq0+kgwdX2UKGgGaAloD0MIEHnL1Y8NDcCUhpRSlGgVSzJoFkdAph4BUFSsKnV9lChoBmgJaA9DCHCwNzEkBwzAlIaUUpRoFUsyaBZHQKYdrwT/Q0J1fZQoaAZoCWgPQwgI6SlyiJgHwJSGlFKUaBVLMmgWR0CmHVcZLqUvdX2UKGgGaAloD0MIh2wgXWy6CsCUhpRSlGgVSzJoFkdAph961y/9HnV9lChoBmgJaA9DCMjtl09W3BHAlIaUUpRoFUsyaBZHQKYfIRg7YCh1fZQoaAZoCWgPQwga4IJsWV4GwJSGlFKUaBVLMmgWR0CmHs4k3S8bdX2UKGgGaAloD0MIDOnwEMavBsCUhpRSlGgVSzJoFkdAph51bA1vVHV9lChoBmgJaA9DCBsOSwM/CgDAlIaUUpRoFUsyaBZHQKYgVj+aScN1fZQoaAZoCWgPQwjuX1lpUloTwJSGlFKUaBVLMmgWR0CmH/w+UyHmdX2UKGgGaAloD0MIqio0EMuWG8CUhpRSlGgVSzJoFkdAph+pJTVDr3V9lChoBmgJaA9DCBNHHogsshTAlIaUUpRoFUsyaBZHQKYfUE5hjON1fZQoaAZoCWgPQwiIZMix9cwIwJSGlFKUaBVLMmgWR0CmITdJBgNPdX2UKGgGaAloD0MI0PHR4oxhCMCUhpRSlGgVSzJoFkdApiDdmL9/BnV9lChoBmgJaA9DCCV6GcVyy/2/lIaUUpRoFUsyaBZHQKYgiornTy91fZQoaAZoCWgPQwjP86eN6jQYwJSGlFKUaBVLMmgWR0CmIDGxdIGydX2UKGgGaAloD0MIUrezrzxoC8CUhpRSlGgVSzJoFkdApiIRimVJMHV9lChoBmgJaA9DCKTk1TkG5BLAlIaUUpRoFUsyaBZHQKYhuBMBZIR1fZQoaAZoCWgPQwjcm98w0WANwJSGlFKUaBVLMmgWR0CmIWUD2alUdX2UKGgGaAloD0MIp+hILv9BDMCUhpRSlGgVSzJoFkdApiEMNx2jf3V9lChoBmgJaA9DCJVm8zgM5v2/lIaUUpRoFUsyaBZHQKYi87Ackt51fZQoaAZoCWgPQwg3qP3WTrQPwJSGlFKUaBVLMmgWR0CmIpm7rcCYdX2UKGgGaAloD0MIsD2zJEDNB8CUhpRSlGgVSzJoFkdApiJGwgTyrnV9lChoBmgJaA9DCNhIEoQr8BHAlIaUUpRoFUsyaBZHQKYh7fO2RaJ1fZQoaAZoCWgPQwireCPzyD8GwJSGlFKUaBVLMmgWR0CmI9D7655JdX2UKGgGaAloD0MIdNNmnIZoCcCUhpRSlGgVSzJoFkdApiN2+bmU4nV9lChoBmgJaA9DCKEvvf25KAXAlIaUUpRoFUsyaBZHQKYjI9alk6N1fZQoaAZoCWgPQwhQqRJlb8kEwJSGlFKUaBVLMmgWR0CmIssGorFwdX2UKGgGaAloD0MIdNGQ8Sj1AsCUhpRSlGgVSzJoFkdApiS29WZJCnV9lChoBmgJaA9DCAIOoUrNbhbAlIaUUpRoFUsyaBZHQKYkXPLPldV1fZQoaAZoCWgPQwhPAwZJn3YRwJSGlFKUaBVLMmgWR0CmJAnk1dgOdX2UKGgGaAloD0MIPIbHfhYrDcCUhpRSlGgVSzJoFkdApiOxo4+8oXV9lChoBmgJaA9DCFGFP8ObdQnAlIaUUpRoFUsyaBZHQKYlk9Mbm2d1fZQoaAZoCWgPQwiYFvVJ7nD+v5SGlFKUaBVLMmgWR0CmJTn+ZPVNdX2UKGgGaAloD0MIbf/KSpMiEsCUhpRSlGgVSzJoFkdApiTm76Hj63V9lChoBmgJaA9DCJF9kGXBpAfAlIaUUpRoFUsyaBZHQKYkjiWE9Md1fZQoaAZoCWgPQwjJq3MMyF4JwJSGlFKUaBVLMmgWR0CmJnNn5BTodX2UKGgGaAloD0MItU/HYwYqA8CUhpRSlGgVSzJoFkdApiYZc3VConV9lChoBmgJaA9DCOHUB5J3Dv+/lIaUUpRoFUsyaBZHQKYlxl/Yrax1fZQoaAZoCWgPQwgIrBxaZLsSwJSGlFKUaBVLMmgWR0CmJW31rZandX2UKGgGaAloD0MI+Z6RCI0wEMCUhpRSlGgVSzJoFkdApidTxsl9jXV9lChoBmgJaA9DCK7Zykv+xwbAlIaUUpRoFUsyaBZHQKYm+fdRBNV1fZQoaAZoCWgPQwi8ehUZHfASwJSGlFKUaBVLMmgWR0CmJqb52yLRdX2UKGgGaAloD0MI5ZmXw+57CMCUhpRSlGgVSzJoFkdApiZOLUCq63V9lChoBmgJaA9DCCRHOgMjb/y/lIaUUpRoFUsyaBZHQKYoMiLVFx51fZQoaAZoCWgPQwhig4WTNL8JwJSGlFKUaBVLMmgWR0CmJ9hvrGBGdX2UKGgGaAloD0MIbNCX3v68B8CUhpRSlGgVSzJoFkdApieFcnmaIHV9lChoBmgJaA9DCPJ8BtSbUQfAlIaUUpRoFUsyaBZHQKYnLKA8Swp1fZQoaAZoCWgPQwiNnIU97bAAwJSGlFKUaBVLMmgWR0CmKR3DvVmSdX2UKGgGaAloD0MIbcX+snvyBsCUhpRSlGgVSzJoFkdApijD4L1EmnV9lChoBmgJaA9DCN0/FqJDYAfAlIaUUpRoFUsyaBZHQKYocPhhpg11fZQoaAZoCWgPQwhm2ZPA5owQwJSGlFKUaBVLMmgWR0CmKBgyM1jzdX2UKGgGaAloD0MI6pYd4h92DcCUhpRSlGgVSzJoFkdApioC8OCoTHV9lChoBmgJaA9DCDUmxFxS9f6/lIaUUpRoFUsyaBZHQKYpqP8Q7Ld1fZQoaAZoCWgPQwi1bRgFwYMPwJSGlFKUaBVLMmgWR0CmKVXumaYvdX2UKGgGaAloD0MI7N0f71VLCsCUhpRSlGgVSzJoFkdApij9GmUGFHV9lChoBmgJaA9DCPt2EhH+BQPAlIaUUpRoFUsyaBZHQKYq66ClJpZ1fZQoaAZoCWgPQwgMzXUaaQkYwJSGlFKUaBVLMmgWR0CmKpGyon8bdX2UKGgGaAloD0MI2qoksg+SEsCUhpRSlGgVSzJoFkdApio+oDPnjnV9lChoBmgJaA9DCDhIiPIFTQbAlIaUUpRoFUsyaBZHQKYp5eRgZ0l1fZQoaAZoCWgPQwhNhA1PrxQPwJSGlFKUaBVLMmgWR0CmK95TZQHidX2UKGgGaAloD0MIXU90XfjhAcCUhpRSlGgVSzJoFkdApiuEZ3s5XHV9lChoBmgJaA9DCC0iiskbAADAlIaUUpRoFUsyaBZHQKYrMVhTfix1fZQoaAZoCWgPQwhCs+veisQFwJSGlFKUaBVLMmgWR0CmKtiRfWtmdX2UKGgGaAloD0MIKxTpfk5BB8CUhpRSlGgVSzJoFkdApizAis4kvHV9lChoBmgJaA9DCDRKl/4lORHAlIaUUpRoFUsyaBZHQKYsZomG/N91fZQoaAZoCWgPQwi2aWyvBd0PwJSGlFKUaBVLMmgWR0CmLBOzIFNddX2UKGgGaAloD0MIzNHj9zZ9AsCUhpRSlGgVSzJoFkdApiu626TW5HV9lChoBmgJaA9DCK7UsyCUhxPAlIaUUpRoFUsyaBZHQKYtnQN0/4Z1fZQoaAZoCWgPQwjQKcjPRu4SwJSGlFKUaBVLMmgWR0CmLUMbFS88dX2UKGgGaAloD0MIb57qkJtBEMCUhpRSlGgVSzJoFkdApizwfdRBNXV9lChoBmgJaA9DCBppqbwdAQXAlIaUUpRoFUsyaBZHQKYsmBYFJQN1fZQoaAZoCWgPQwiKWS+GckIEwJSGlFKUaBVLMmgWR0CmLnq+rU9ZdX2UKGgGaAloD0MIV87eGW0VG8CUhpRSlGgVSzJoFkdApi4gumJm/XV9lChoBmgJaA9DCHUg66nVVwrAlIaUUpRoFUsyaBZHQKYtzaufVZt1fZQoaAZoCWgPQwh/MzFdiBUMwJSGlFKUaBVLMmgWR0CmLXTlT3qSdX2UKGgGaAloD0MIjsni/iPzBcCUhpRSlGgVSzJoFkdApi9aElE7XHV9lChoBmgJaA9DCHpSJjW0URLAlIaUUpRoFUsyaBZHQKYvAExqO951fZQoaAZoCWgPQwhC0NGqlhQHwJSGlFKUaBVLMmgWR0CmLq1JlJ6IdX2UKGgGaAloD0MIOzQsRl2rEcCUhpRSlGgVSzJoFkdApi5UkhRqGnV9lChoBmgJaA9DCFad1QJ7nBnAlIaUUpRoFUsyaBZHQKYwQNwzch11fZQoaAZoCWgPQwiMMbCO4ycFwJSGlFKUaBVLMmgWR0CmL+bf51vEdX2UKGgGaAloD0MImzdOCvMe/b+UhpRSlGgVSzJoFkdApi+T4agmJHV9lChoBmgJaA9DCF2MgXUcPwTAlIaUUpRoFUsyaBZHQKYvOzv7WNF1fZQoaAZoCWgPQwiEnWLVIEwGwJSGlFKUaBVLMmgWR0CmMSM2vStvdX2UKGgGaAloD0MIotKImX0eCcCUhpRSlGgVSzJoFkdApjDJPqLS/nV9lChoBmgJaA9DCKxvYHKjKAnAlIaUUpRoFUsyaBZHQKYwdix3V091fZQoaAZoCWgPQwgdAHFXryIKwJSGlFKUaBVLMmgWR0CmMB1aW5YpdX2UKGgGaAloD0MIG4LjMm7KEMCUhpRSlGgVSzJoFkdApjIG8wpOOHV9lChoBmgJaA9DCMU7wJMWjhDAlIaUUpRoFUsyaBZHQKYxrOnl4kh1fZQoaAZoCWgPQwiiQ+BIoIEKwJSGlFKUaBVLMmgWR0CmMVnmig01dX2UKGgGaAloD0MIzEBl/PvMEcCUhpRSlGgVSzJoFkdApjEBL/S6UnV9lChoBmgJaA9DCJkqGJXU6QTAlIaUUpRoFUsyaBZHQKYy6is4ku91fZQoaAZoCWgPQwg3OXzSidQWwJSGlFKUaBVLMmgWR0CmMpA/9pAVdX2UKGgGaAloD0MI+IxEaATrEsCUhpRSlGgVSzJoFkdApjI9LeyiVXV9lChoBmgJaA9DCI5AvK5f8A7AlIaUUpRoFUsyaBZHQKYx5EdeY2N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (829 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.8655381542630494, "std_reward": 0.9097321874399162, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-22T08:06:02.847329"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb4c4c5b2b2901f462f54dc5dd6fb58b217fa1e5038137124d5e59ba4e06cfe8
3
+ size 2387