yeounyi commited on
Commit
995ab69
·
1 Parent(s): 836c0cf

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -4.03 +/- 1.70
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.75 +/- 0.36
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:870cb875987ceae49e3ba0e11ab2998ca1821528bdacf16caba6b70684089599
3
- size 108145
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28f810e22a3537d665c743c3b9907679852a1b1125c45ef583b35023d86b0ace
3
+ size 108037
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x784b46adc820>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x784b46ad8d00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1500000,
23
- "_total_timesteps": 1500000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1690031020333192597,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoyXgPu+YGj29BxQ/oyXgPu+YGj29BxQ/oyXgPu+YGj29BxQ/oyXgPu+YGj29BxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwAXMPhfZxj/1NrW/KjqzPsFonT/wbfY+iqrsPHOk670JRSi/rnPbPz+yb79jFb89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACjJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LujJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LujJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LujJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[0.43778715 0.03774351 0.5782431 ]\n [0.43778715 0.03774351 0.5782431 ]\n [0.43778715 0.03774351 0.5782431 ]\n [0.43778715 0.03774351 0.5782431 ]]",
38
- "desired_goal": "[[ 0.39848137 1.5535 -1.4157397 ]\n [ 0.35005313 1.2297593 0.4813075 ]\n [ 0.02888991 -0.11505976 -0.6573034 ]\n [ 1.7144678 -0.93631357 0.09330251]]",
39
- "observation": "[[ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]\n [ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]\n [ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]\n [ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx6hsvUbhKL3p7KA9k0PYvIu0Zb1smw08tXQIPrh/GL5gaTg+aAOMPZAs3T2pGJ89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.05777815 -0.04123046 0.07857687]\n [-0.02639941 -0.05608038 0.00864301]\n [ 0.1332577 -0.14892471 0.18008947]\n [ 0.06836587 0.10799515 0.07768375]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrROX4xXoGsCUhpRSlIwBbJRLMowBdJRHQK7LCfvF3px1fZQoaAZoCWgPQwhDGhU42UYNwJSGlFKUaBVLMmgWR0Cuys2ac7QtdX2UKGgGaAloD0MIysFsAgzLBcCUhpRSlGgVSzJoFkdArsqOK8+Ro3V9lChoBmgJaA9DCLLa/L/qKAzAlIaUUpRoFUsyaBZHQK7KUfkmx+t1fZQoaAZoCWgPQwgwuVFkrUERwJSGlFKUaBVLMmgWR0Cuy+vdM0xedX2UKGgGaAloD0MIlddK6C5JEcCUhpRSlGgVSzJoFkdArsuutdRiw3V9lChoBmgJaA9DCERq2sU0kxbAlIaUUpRoFUsyaBZHQK7LbrDZUUB1fZQoaAZoCWgPQwh4Qq8/iQ//v5SGlFKUaBVLMmgWR0CuyzHtF8XvdX2UKGgGaAloD0MI0Xr4MlEkA8CUhpRSlGgVSzJoFkdArszG/UONHnV9lChoBmgJaA9DCNdrelBQehDAlIaUUpRoFUsyaBZHQK7MigUUO/d1fZQoaAZoCWgPQwjMeca+ZGMFwJSGlFKUaBVLMmgWR0CuzEm+9Jz1dX2UKGgGaAloD0MIvhWJCWq4CcCUhpRSlGgVSzJoFkdArswNB2OhkHV9lChoBmgJaA9DCDFbsirCbQzAlIaUUpRoFUsyaBZHQK7Noa1kUbl1fZQoaAZoCWgPQwhYkjzX9xEdwJSGlFKUaBVLMmgWR0CuzWSNXHR1dX2UKGgGaAloD0MISdkiaTd6DcCUhpRSlGgVSzJoFkdArs0kWKuSwHV9lChoBmgJaA9DCBOe0OtPggrAlIaUUpRoFUsyaBZHQK7M58Jlar51fZQoaAZoCWgPQwgHtkqwOLwHwJSGlFKUaBVLMmgWR0CuznutOmBOdX2UKGgGaAloD0MIGCXoL/QoEsCUhpRSlGgVSzJoFkdArs4+szVMEnV9lChoBmgJaA9DCEZ8J2a9WAzAlIaUUpRoFUsyaBZHQK7N/n3cpLF1fZQoaAZoCWgPQwh+HM2RlR8VwJSGlFKUaBVLMmgWR0CuzcHT7VJ+dX2UKGgGaAloD0MI+nspPGgWHMCUhpRSlGgVSzJoFkdArs9jtZ3cHnV9lChoBmgJaA9DCJdvfVhvVAvAlIaUUpRoFUsyaBZHQK7PJojfNzN1fZQoaAZoCWgPQwguxsA6jr8IwJSGlFKUaBVLMmgWR0CuzuY/u9eydX2UKGgGaAloD0MIaD18mSjCAcCUhpRSlGgVSzJoFkdArs6ppDeCTXV9lChoBmgJaA9DCHEDPj+MkA/AlIaUUpRoFUsyaBZHQK7QRJAdGRV1fZQoaAZoCWgPQwjsMCb9vTQKwJSGlFKUaBVLMmgWR0Cu0AdyksSTdX2UKGgGaAloD0MItAQZARUOB8CUhpRSlGgVSzJoFkdArs/HPZ7HAHV9lChoBmgJaA9DCMdkcf+RyRvAlIaUUpRoFUsyaBZHQK7PioYvWYp1fZQoaAZoCWgPQwhFYoIavqUCwJSGlFKUaBVLMmgWR0Cu0RvAO8TSdX2UKGgGaAloD0MI5bm+DwcpDcCUhpRSlGgVSzJoFkdArtDejj7yhHV9lChoBmgJaA9DCBwlr84xAAfAlIaUUpRoFUsyaBZHQK7QnnZCfHx1fZQoaAZoCWgPQwggm+RH/IoEwJSGlFKUaBVLMmgWR0Cu0GG2b5M2dX2UKGgGaAloD0MIml5iLNMvAcCUhpRSlGgVSzJoFkdArtIHb212JXV9lChoBmgJaA9DCMuGNZVFgQrAlIaUUpRoFUsyaBZHQK7RynHeaa11fZQoaAZoCWgPQwg1e6AVGJIWwJSGlFKUaBVLMmgWR0Cu0Yo6bONYdX2UKGgGaAloD0MI0/TZAdf1EMCUhpRSlGgVSzJoFkdArtFNs1sLv3V9lChoBmgJaA9DCG5Q+62dSAPAlIaUUpRoFUsyaBZHQK7S5iWE9Md1fZQoaAZoCWgPQwhwCFVq9sADwJSGlFKUaBVLMmgWR0Cu0qkEC/47dX2UKGgGaAloD0MIlLw6x4CMDsCUhpRSlGgVSzJoFkdArtJo9ovi+HV9lChoBmgJaA9DCFzGTQ00TxDAlIaUUpRoFUsyaBZHQK7SLG3F1jl1fZQoaAZoCWgPQwj7y+7Jw8IDwJSGlFKUaBVLMmgWR0Cu092MCLdfdX2UKGgGaAloD0MIPN154jnbCsCUhpRSlGgVSzJoFkdArtOggJTl1nV9lChoBmgJaA9DCF+0xwvpIBnAlIaUUpRoFUsyaBZHQK7TYMxXXAd1fZQoaAZoCWgPQwjFxryOOCQFwJSGlFKUaBVLMmgWR0Cu0yQX668QdX2UKGgGaAloD0MIWyTtRh8zGMCUhpRSlGgVSzJoFkdArtS/n0TURXV9lChoBmgJaA9DCBJsXP+ubwvAlIaUUpRoFUsyaBZHQK7UgmygPEt1fZQoaAZoCWgPQwjLZaNzfkoCwJSGlFKUaBVLMmgWR0Cu1EIjv/ipdX2UKGgGaAloD0MI1PGYgcoYCsCUhpRSlGgVSzJoFkdArtQFYB/7SHV9lChoBmgJaA9DCHui68IPDgTAlIaUUpRoFUsyaBZHQK7Vnn3+MqB1fZQoaAZoCWgPQwgrieyDLCsCwJSGlFKUaBVLMmgWR0Cu1WFoUSIydX2UKGgGaAloD0MIUPutnSg5HcCUhpRSlGgVSzJoFkdArtUhS9/SY3V9lChoBmgJaA9DCKlQ3Vz87QjAlIaUUpRoFUsyaBZHQK7U5Lkjopx1fZQoaAZoCWgPQwgVU+knnB0DwJSGlFKUaBVLMmgWR0Cu1oKjafz0dX2UKGgGaAloD0MIDykGSDQREMCUhpRSlGgVSzJoFkdArtZFe4TbnHV9lChoBmgJaA9DCN1dZ0P+qRjAlIaUUpRoFUsyaBZHQK7WBS4OMER1fZQoaAZoCWgPQwjD1JY6yOsDwJSGlFKUaBVLMmgWR0Cu1cjFyaNNdX2UKGgGaAloD0MI6q7sgsE1HcCUhpRSlGgVSzJoFkdArtfGzOX3QHV9lChoBmgJaA9DCCWuY1xxUQvAlIaUUpRoFUsyaBZHQK7XikeIVM51fZQoaAZoCWgPQwiVtU3xuGgGwJSGlFKUaBVLMmgWR0Cu10qgqVhTdX2UKGgGaAloD0MICMcsexIYCcCUhpRSlGgVSzJoFkdArtcOyon8bnV9lChoBmgJaA9DCL0bCwqDkhTAlIaUUpRoFUsyaBZHQK7ZMMkQf6p1fZQoaAZoCWgPQwgg0m9fBx4VwJSGlFKUaBVLMmgWR0Cu2PQ7LdN4dX2UKGgGaAloD0MIZaiKqfQzGsCUhpRSlGgVSzJoFkdArti07p3X7XV9lChoBmgJaA9DCA4uHXOekRHAlIaUUpRoFUsyaBZHQK7YeOIZZSx1fZQoaAZoCWgPQwi+9WG9UUsJwJSGlFKUaBVLMmgWR0Cu2odwNsnBdX2UKGgGaAloD0MIpYXLKmymAcCUhpRSlGgVSzJoFkdArtpK0+kgwHV9lChoBmgJaA9DCKlLxjGSvQDAlIaUUpRoFUsyaBZHQK7aCx6fJ3h1fZQoaAZoCWgPQwgVcM/zp00BwJSGlFKUaBVLMmgWR0Cu2c87QswtdX2UKGgGaAloD0MI0CaHTzqRAMCUhpRSlGgVSzJoFkdArtvr19ORDHV9lChoBmgJaA9DCDrJVpdTIgTAlIaUUpRoFUsyaBZHQK7brzz3AVR1fZQoaAZoCWgPQwh41QPmIbMKwJSGlFKUaBVLMmgWR0Cu22+eFtbcdX2UKGgGaAloD0MIiLg5lQzABMCUhpRSlGgVSzJoFkdArtszyBkI5nV9lChoBmgJaA9DCFUxlX7C2QDAlIaUUpRoFUsyaBZHQK7dYdNnGsF1fZQoaAZoCWgPQwj4jERoBBsIwJSGlFKUaBVLMmgWR0Cu3SWIO6NEdX2UKGgGaAloD0MIizVc5J6eEMCUhpRSlGgVSzJoFkdArtzm3Ytg8nV9lChoBmgJaA9DCOHTnLzIhAjAlIaUUpRoFUsyaBZHQK7cqtfXwsp1fZQoaAZoCWgPQwjZ0TjU72IBwJSGlFKUaBVLMmgWR0Cu3lQS8J2MdX2UKGgGaAloD0MIcF6c+GonCcCUhpRSlGgVSzJoFkdArt4XWWhRInV9lChoBmgJaA9DCGVQbXAiuhrAlIaUUpRoFUsyaBZHQK7d1003wTd1fZQoaAZoCWgPQwjghEIEHIILwJSGlFKUaBVLMmgWR0Cu3ZrPldTpdX2UKGgGaAloD0MIdzHNdK+jF8CUhpRSlGgVSzJoFkdArt8y3PRiPXV9lChoBmgJaA9DCKzgtyHGywbAlIaUUpRoFUsyaBZHQK7e9dGAkLR1fZQoaAZoCWgPQwhVwD3Pn3YMwJSGlFKUaBVLMmgWR0Cu3rXHzYmLdX2UKGgGaAloD0MICKwcWmS7B8CUhpRSlGgVSzJoFkdArt55HTZxrHV9lChoBmgJaA9DCBYW3A940BzAlIaUUpRoFUsyaBZHQK7gHGHYYix1fZQoaAZoCWgPQwhs7uh/uRYCwJSGlFKUaBVLMmgWR0Cu398+7lJZdX2UKGgGaAloD0MI8djPYinSBcCUhpRSlGgVSzJoFkdArt+fB7/n4nV9lChoBmgJaA9DCCIXnMHfTw7AlIaUUpRoFUsyaBZHQK7fYoFV1fV1fZQoaAZoCWgPQwhKmGn7V7YAwJSGlFKUaBVLMmgWR0Cu4P/YraufdX2UKGgGaAloD0MIu16aIsDpEsCUhpRSlGgVSzJoFkdAruDDJwKjSHV9lChoBmgJaA9DCDxp4bIKaxPAlIaUUpRoFUsyaBZHQK7ggt/WlM11fZQoaAZoCWgPQwhPkxlvK/0BwJSGlFKUaBVLMmgWR0Cu4EYm1IAfdX2UKGgGaAloD0MIcHoX78dtBsCUhpRSlGgVSzJoFkdAruHeS0Sh8XV9lChoBmgJaA9DCL5muWx0LgLAlIaUUpRoFUsyaBZHQK7hoXWOIZZ1fZQoaAZoCWgPQwggX0IFh9cBwJSGlFKUaBVLMmgWR0Cu4WFT3qRmdX2UKGgGaAloD0MI3gAz38HfF8CUhpRSlGgVSzJoFkdAruEk2tMfzXV9lChoBmgJaA9DCMo0mlyM8RDAlIaUUpRoFUsyaBZHQK7iujt5UtJ1fZQoaAZoCWgPQwjJycStgtgGwJSGlFKUaBVLMmgWR0Cu4n0lRgqmdX2UKGgGaAloD0MI3CxeLAwBHcCUhpRSlGgVSzJoFkdAruI863iJf3V9lChoBmgJaA9DCIi4OZUMABDAlIaUUpRoFUsyaBZHQK7iADXe3x51ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 75000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x791be0a9f9a0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x791be0a9a900>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 1800000,
23
+ "_total_timesteps": 1800000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1690075317040334577,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgZzfPt67NT2QDxc/gZzfPt67NT2QDxc/gZzfPt67NT2QDxc/gZzfPt67NT2QDxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPfhHvpAMD776RTY/RRR/vXQvfb5udBq9/L9Bvvp/3D78nL2+m0LYP6pZxL+BYK0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.4367409 0.04436862 0.5900812 ]\n [0.4367409 0.04436862 0.5900812 ]\n [0.4367409 0.04436862 0.5900812 ]\n [0.4367409 0.04436862 0.5900812 ]]",
38
+ "desired_goal": "[[-0.19528289 -0.13969636 0.71200526]\n [-0.06227519 -0.24725133 -0.03770869]\n [-0.18920892 0.43066388 -0.37033832]\n [ 1.6895326 -1.5339863 1.3545076 ]]",
39
+ "observation": "[[0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]\n [0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]\n [0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]\n [0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXT3hvSm+4z1G+h8+RKUCvsCkkL1Aryg+d8TxPc0dDD705D4+1yPvvQAjdL3W0mU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.10998032 0.11120255 0.15622815]\n [-0.12758356 -0.07062674 0.16473103]\n [ 0.11805051 0.13683243 0.18642026]\n [-0.11676758 -0.05960369 0.22443709]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYqOs30xM+7+UhpRSlIwBbJRLMowBdJRHQLLzjL39JjF1fZQoaAZoCWgPQwhKQiJt40/8v5SGlFKUaBVLMmgWR0Cy828nAqNIdX2UKGgGaAloD0MILIApAwe0BsCUhpRSlGgVSzJoFkdAsvNR/BnBcnV9lChoBmgJaA9DCNRFCmXha/2/lIaUUpRoFUsyaBZHQLLzNWxhUip1fZQoaAZoCWgPQwjNBplk5EwDwJSGlFKUaBVLMmgWR0Cy8/6raM72dX2UKGgGaAloD0MI/u+ICtXN+r+UhpRSlGgVSzJoFkdAsvPhHlOoHnV9lChoBmgJaA9DCA9Iwr6d5ADAlIaUUpRoFUsyaBZHQLLzw+qR2bJ1fZQoaAZoCWgPQwh0e0ljtE4FwJSGlFKUaBVLMmgWR0Cy86ddmg8KdX2UKGgGaAloD0MIo3a/CvAd/7+UhpRSlGgVSzJoFkdAsvRyg13t8nV9lChoBmgJaA9DCJVGzOzz2ALAlIaUUpRoFUsyaBZHQLL0VRB/qgR1fZQoaAZoCWgPQwhI/Io1XAQJwJSGlFKUaBVLMmgWR0Cy9Df779AHdX2UKGgGaAloD0MIUpyjjo6rA8CUhpRSlGgVSzJoFkdAsvQbhXKbKHV9lChoBmgJaA9DCEAUzJiCdQPAlIaUUpRoFUsyaBZHQLL05o0ALiN1fZQoaAZoCWgPQwiBe54/bVT6v5SGlFKUaBVLMmgWR0Cy9Mja9K28dX2UKGgGaAloD0MIAB+8dmmjAsCUhpRSlGgVSzJoFkdAsvSrs2NvO3V9lChoBmgJaA9DCIxn0NA/QQbAlIaUUpRoFUsyaBZHQLL0j0WdmQN1fZQoaAZoCWgPQwiwko/dBeoBwJSGlFKUaBVLMmgWR0Cy9VjF+/g0dX2UKGgGaAloD0MIIhtIF5uWAcCUhpRSlGgVSzJoFkdAsvU7CBPKuHV9lChoBmgJaA9DCOBL4UGzawPAlIaUUpRoFUsyaBZHQLL1HcFQl8h1fZQoaAZoCWgPQwjw+WGE8GgGwJSGlFKUaBVLMmgWR0Cy9QF/YraudX2UKGgGaAloD0MIK08g7BTLAcCUhpRSlGgVSzJoFkdAsvXKHoHLR3V9lChoBmgJaA9DCAU1fAvrBgLAlIaUUpRoFUsyaBZHQLL1rLidat91fZQoaAZoCWgPQwgIc7uX+2QAwJSGlFKUaBVLMmgWR0Cy9Y/CEYfodX2UKGgGaAloD0MIkzmWd9UDAMCUhpRSlGgVSzJoFkdAsvVzio86m3V9lChoBmgJaA9DCCKMn8a9Ofi/lIaUUpRoFUsyaBZHQLL2OShakh11fZQoaAZoCWgPQwimDBzQ0lX/v5SGlFKUaBVLMmgWR0Cy9ht+b3GodX2UKGgGaAloD0MIwy6KHviY/7+UhpRSlGgVSzJoFkdAsvX+Qq7ROXV9lChoBmgJaA9DCIwUysLXdwXAlIaUUpRoFUsyaBZHQLL14depn6F1fZQoaAZoCWgPQwgg8MAAwgf/v5SGlFKUaBVLMmgWR0Cy9rhKpT/AdX2UKGgGaAloD0MIO4+K/zui/b+UhpRSlGgVSzJoFkdAsvaaugYgq3V9lChoBmgJaA9DCEjcY+lD1/2/lIaUUpRoFUsyaBZHQLL2fcawUxp1fZQoaAZoCWgPQwhRZ+4h4VsAwJSGlFKUaBVLMmgWR0Cy9mGPLgXNdX2UKGgGaAloD0MIjiEAOPYsAMCUhpRSlGgVSzJoFkdAsvct7sv7FnV9lChoBmgJaA9DCGJodXKG4v6/lIaUUpRoFUsyaBZHQLL3EFFUhmp1fZQoaAZoCWgPQwgD6WLTSmH4v5SGlFKUaBVLMmgWR0Cy9vM7uDzzdX2UKGgGaAloD0MIRMTNqWQA+b+UhpRSlGgVSzJoFkdAsvbWwu/UOXV9lChoBmgJaA9DCOw00lJ5WwLAlIaUUpRoFUsyaBZHQLL3n71qWTp1fZQoaAZoCWgPQwiyg0pcxxgDwJSGlFKUaBVLMmgWR0Cy94ILsruqdX2UKGgGaAloD0MIrdo1Ia1RBcCUhpRSlGgVSzJoFkdAsvdkuqWC3HV9lChoBmgJaA9DCPFFe7yQDvu/lIaUUpRoFUsyaBZHQLL3SCBPKuB1fZQoaAZoCWgPQwiQn41cNwUDwJSGlFKUaBVLMmgWR0Cy+CBDTjNqdX2UKGgGaAloD0MIfeasTzkmAsCUhpRSlGgVSzJoFkdAsvgCoJiRXHV9lChoBmgJaA9DCIv7j0yHrgPAlIaUUpRoFUsyaBZHQLL35ZpztC11fZQoaAZoCWgPQwgbLQd6qK0BwJSGlFKUaBVLMmgWR0Cy98lBlcyFdX2UKGgGaAloD0MIIcuCiT/K/L+UhpRSlGgVSzJoFkdAsviZlI3BHnV9lChoBmgJaA9DCL/XEByX8QTAlIaUUpRoFUsyaBZHQLL4fBeokzJ1fZQoaAZoCWgPQwgJjWDj+jcBwJSGlFKUaBVLMmgWR0Cy+F7NSqEOdX2UKGgGaAloD0MIYDqt26C2+r+UhpRSlGgVSzJoFkdAsvhCOIZZS3V9lChoBmgJaA9DCAe2SrA4XAHAlIaUUpRoFUsyaBZHQLL5C9w3o9t1fZQoaAZoCWgPQwggDDz3Hs4CwJSGlFKUaBVLMmgWR0Cy+O4+OfdzdX2UKGgGaAloD0MIpYY2ABvQ/r+UhpRSlGgVSzJoFkdAsvjQ8gZCOXV9lChoBmgJaA9DCPD49q5BH/q/lIaUUpRoFUsyaBZHQLL4tF2FFlV1fZQoaAZoCWgPQwgxRbk0fmHtv5SGlFKUaBVLMmgWR0Cy+YmfseGPdX2UKGgGaAloD0MIdjV5ymo6AcCUhpRSlGgVSzJoFkdAsvlr52yLRHV9lChoBmgJaA9DCPnzbcFSfQTAlIaUUpRoFUsyaBZHQLL5TrNGEwp1fZQoaAZoCWgPQwhg6BGj5xb5v5SGlFKUaBVLMmgWR0Cy+TI11nuidX2UKGgGaAloD0MITBdi9UeY/b+UhpRSlGgVSzJoFkdAsvoGzSkTH3V9lChoBmgJaA9DCJXx7zMuHAPAlIaUUpRoFUsyaBZHQLL56TsY2sJ1fZQoaAZoCWgPQwh7TKQ0m2cDwJSGlFKUaBVLMmgWR0Cy+cwDvE0jdX2UKGgGaAloD0MIowIn28Bd/L+UhpRSlGgVSzJoFkdAsvmvkBCD3HV9lChoBmgJaA9DCD9W8NsQYwHAlIaUUpRoFUsyaBZHQLL6eGbTc7B1fZQoaAZoCWgPQwiBk23gDhT+v5SGlFKUaBVLMmgWR0Cy+lrHuJDWdX2UKGgGaAloD0MIho+IKZGkA8CUhpRSlGgVSzJoFkdAsvo9dv863nV9lChoBmgJaA9DCHTS+8bX3vq/lIaUUpRoFUsyaBZHQLL6IQMhHLB1fZQoaAZoCWgPQwiZ8iGoGv0BwJSGlFKUaBVLMmgWR0Cy+u8PjGT+dX2UKGgGaAloD0MIehhanZyhAsCUhpRSlGgVSzJoFkdAsvrRbaAWi3V9lChoBmgJaA9DCFKdDmQ9Nfy/lIaUUpRoFUsyaBZHQLL6tCswL3N1fZQoaAZoCWgPQwgA/5QqUVYBwJSGlFKUaBVLMmgWR0Cy+peYplSTdX2UKGgGaAloD0MI0ZSdflAXAcCUhpRSlGgVSzJoFkdAsvtsaS9ug3V9lChoBmgJaA9DCOs1PSgopQbAlIaUUpRoFUsyaBZHQLL7TtTUAkt1fZQoaAZoCWgPQwjaU3JO7OEGwJSGlFKUaBVLMmgWR0Cy+zGSZBszdX2UKGgGaAloD0MI2GMipdk8A8CUhpRSlGgVSzJoFkdAsvsVGG21D3V9lChoBmgJaA9DCPg1kgThKgDAlIaUUpRoFUsyaBZHQLL74DeCTU11fZQoaAZoCWgPQwjNlUG1wSkDwJSGlFKUaBVLMmgWR0Cy+8KhcqvvdX2UKGgGaAloD0MIxxLWxtipBcCUhpRSlGgVSzJoFkdAsvulUhmoSHV9lChoBmgJaA9DCA9HV+nuOv+/lIaUUpRoFUsyaBZHQLL7iMJQcgh1fZQoaAZoCWgPQwizP1Bu29cGwJSGlFKUaBVLMmgWR0Cy/FRjvuw5dX2UKGgGaAloD0MI00uMZfrlAcCUhpRSlGgVSzJoFkdAsvw22Xsw+XV9lChoBmgJaA9DCKhRSDKr1wHAlIaUUpRoFUsyaBZHQLL8Ga6BiCt1fZQoaAZoCWgPQwj2JLA5B08GwJSGlFKUaBVLMmgWR0Cy+/0wnH/+dX2UKGgGaAloD0MIL/zgfOoYCsCUhpRSlGgVSzJoFkdAsvzMgHNX5nV9lChoBmgJaA9DCHsS2JyDJwHAlIaUUpRoFUsyaBZHQLL8rt/WlM11fZQoaAZoCWgPQwibOLnfoYgCwJSGlFKUaBVLMmgWR0Cy/JGtlqagdX2UKGgGaAloD0MIavZAKzCkAcCUhpRSlGgVSzJoFkdAsvx1MJx//nV9lChoBmgJaA9DCGQ9tfrqqgHAlIaUUpRoFUsyaBZHQLL9RIMBp6B1fZQoaAZoCWgPQwgYd4NorUgDwJSGlFKUaBVLMmgWR0Cy/SbofSx8dX2UKGgGaAloD0MI14aKcf7GAsCUhpRSlGgVSzJoFkdAsv0Js+FDfHV9lChoBmgJaA9DCDwx68VQTgPAlIaUUpRoFUsyaBZHQLL87Tg2qDN1fZQoaAZoCWgPQwg3bFuU2YABwJSGlFKUaBVLMmgWR0Cy/fFVLi++dX2UKGgGaAloD0MIeVxUi4hi/L+UhpRSlGgVSzJoFkdAsv3Uhr30w3V9lChoBmgJaA9DCGVR2EXRIwDAlIaUUpRoFUsyaBZHQLL9t9PUKAt1fZQoaAZoCWgPQwhkc9U8R0QCwJSGlFKUaBVLMmgWR0Cy/ZuPNmlJdX2UKGgGaAloD0MI0h3EzhQ6AcCUhpRSlGgVSzJoFkdAsv6kKohpxnV9lChoBmgJaA9DCCoZAKq4cfy/lIaUUpRoFUsyaBZHQLL+hrULDyh1fZQoaAZoCWgPQwjGGFjH8eMEwJSGlFKUaBVLMmgWR0Cy/mm6bvw3dX2UKGgGaAloD0MIllmEYiuoAMCUhpRSlGgVSzJoFkdAsv5Nb/wRXnV9lChoBmgJaA9DCFPNrKWAtP6/lIaUUpRoFUsyaBZHQLL/WICU5dZ1fZQoaAZoCWgPQwjcniCx3b0DwJSGlFKUaBVLMmgWR0Cy/zsWj45+dX2UKGgGaAloD0MIGvz9YrakAcCUhpRSlGgVSzJoFkdAsv8eO3lS0nV9lChoBmgJaA9DCGWqYFRSRwTAlIaUUpRoFUsyaBZHQLL/AfVI7Nl1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 90000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d26f742a7a274722804ca5e5ea5b0eb18a0878e2ec1180f09643feaa654d4f02
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d510a13d81e3ad661143eba623b313d0f2cd87e6ff5fdcc6bee4c3fe39f43a
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:34b1ca065123f224a5a2d3199393f48f4e49fcd68333eb1eb92c16e01df62345
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9366aac0b0ed5a6a5d305e0bcbe944e6ca691b010e07e48b917c3877d157b1b
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x784b46adc820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784b46ad8d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690031020333192597, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoyXgPu+YGj29BxQ/oyXgPu+YGj29BxQ/oyXgPu+YGj29BxQ/oyXgPu+YGj29BxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwAXMPhfZxj/1NrW/KjqzPsFonT/wbfY+iqrsPHOk670JRSi/rnPbPz+yb79jFb89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACjJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LujJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LujJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LujJeA+75gaPb0HFD/iMPu5d1Hvt4hw+LuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43778715 0.03774351 0.5782431 ]\n [0.43778715 0.03774351 0.5782431 ]\n [0.43778715 0.03774351 0.5782431 ]\n [0.43778715 0.03774351 0.5782431 ]]", "desired_goal": "[[ 0.39848137 1.5535 -1.4157397 ]\n [ 0.35005313 1.2297593 0.4813075 ]\n [ 0.02888991 -0.11505976 -0.6573034 ]\n [ 1.7144678 -0.93631357 0.09330251]]", "observation": "[[ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]\n [ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]\n [ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]\n [ 4.3778715e-01 3.7743505e-02 5.7824308e-01 -4.7910871e-04\n -2.8528955e-05 -7.5817741e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx6hsvUbhKL3p7KA9k0PYvIu0Zb1smw08tXQIPrh/GL5gaTg+aAOMPZAs3T2pGJ89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05777815 -0.04123046 0.07857687]\n [-0.02639941 -0.05608038 0.00864301]\n [ 0.1332577 -0.14892471 0.18008947]\n [ 0.06836587 0.10799515 0.07768375]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrROX4xXoGsCUhpRSlIwBbJRLMowBdJRHQK7LCfvF3px1fZQoaAZoCWgPQwhDGhU42UYNwJSGlFKUaBVLMmgWR0Cuys2ac7QtdX2UKGgGaAloD0MIysFsAgzLBcCUhpRSlGgVSzJoFkdArsqOK8+Ro3V9lChoBmgJaA9DCLLa/L/qKAzAlIaUUpRoFUsyaBZHQK7KUfkmx+t1fZQoaAZoCWgPQwgwuVFkrUERwJSGlFKUaBVLMmgWR0Cuy+vdM0xedX2UKGgGaAloD0MIlddK6C5JEcCUhpRSlGgVSzJoFkdArsuutdRiw3V9lChoBmgJaA9DCERq2sU0kxbAlIaUUpRoFUsyaBZHQK7LbrDZUUB1fZQoaAZoCWgPQwh4Qq8/iQ//v5SGlFKUaBVLMmgWR0CuyzHtF8XvdX2UKGgGaAloD0MI0Xr4MlEkA8CUhpRSlGgVSzJoFkdArszG/UONHnV9lChoBmgJaA9DCNdrelBQehDAlIaUUpRoFUsyaBZHQK7MigUUO/d1fZQoaAZoCWgPQwjMeca+ZGMFwJSGlFKUaBVLMmgWR0CuzEm+9Jz1dX2UKGgGaAloD0MIvhWJCWq4CcCUhpRSlGgVSzJoFkdArswNB2OhkHV9lChoBmgJaA9DCDFbsirCbQzAlIaUUpRoFUsyaBZHQK7Noa1kUbl1fZQoaAZoCWgPQwhYkjzX9xEdwJSGlFKUaBVLMmgWR0CuzWSNXHR1dX2UKGgGaAloD0MISdkiaTd6DcCUhpRSlGgVSzJoFkdArs0kWKuSwHV9lChoBmgJaA9DCBOe0OtPggrAlIaUUpRoFUsyaBZHQK7M58Jlar51fZQoaAZoCWgPQwgHtkqwOLwHwJSGlFKUaBVLMmgWR0CuznutOmBOdX2UKGgGaAloD0MIGCXoL/QoEsCUhpRSlGgVSzJoFkdArs4+szVMEnV9lChoBmgJaA9DCEZ8J2a9WAzAlIaUUpRoFUsyaBZHQK7N/n3cpLF1fZQoaAZoCWgPQwh+HM2RlR8VwJSGlFKUaBVLMmgWR0CuzcHT7VJ+dX2UKGgGaAloD0MI+nspPGgWHMCUhpRSlGgVSzJoFkdArs9jtZ3cHnV9lChoBmgJaA9DCJdvfVhvVAvAlIaUUpRoFUsyaBZHQK7PJojfNzN1fZQoaAZoCWgPQwguxsA6jr8IwJSGlFKUaBVLMmgWR0CuzuY/u9eydX2UKGgGaAloD0MIaD18mSjCAcCUhpRSlGgVSzJoFkdArs6ppDeCTXV9lChoBmgJaA9DCHEDPj+MkA/AlIaUUpRoFUsyaBZHQK7QRJAdGRV1fZQoaAZoCWgPQwjsMCb9vTQKwJSGlFKUaBVLMmgWR0Cu0AdyksSTdX2UKGgGaAloD0MItAQZARUOB8CUhpRSlGgVSzJoFkdArs/HPZ7HAHV9lChoBmgJaA9DCMdkcf+RyRvAlIaUUpRoFUsyaBZHQK7PioYvWYp1fZQoaAZoCWgPQwhFYoIavqUCwJSGlFKUaBVLMmgWR0Cu0RvAO8TSdX2UKGgGaAloD0MI5bm+DwcpDcCUhpRSlGgVSzJoFkdArtDejj7yhHV9lChoBmgJaA9DCBwlr84xAAfAlIaUUpRoFUsyaBZHQK7QnnZCfHx1fZQoaAZoCWgPQwggm+RH/IoEwJSGlFKUaBVLMmgWR0Cu0GG2b5M2dX2UKGgGaAloD0MIml5iLNMvAcCUhpRSlGgVSzJoFkdArtIHb212JXV9lChoBmgJaA9DCMuGNZVFgQrAlIaUUpRoFUsyaBZHQK7RynHeaa11fZQoaAZoCWgPQwg1e6AVGJIWwJSGlFKUaBVLMmgWR0Cu0Yo6bONYdX2UKGgGaAloD0MI0/TZAdf1EMCUhpRSlGgVSzJoFkdArtFNs1sLv3V9lChoBmgJaA9DCG5Q+62dSAPAlIaUUpRoFUsyaBZHQK7S5iWE9Md1fZQoaAZoCWgPQwhwCFVq9sADwJSGlFKUaBVLMmgWR0Cu0qkEC/47dX2UKGgGaAloD0MIlLw6x4CMDsCUhpRSlGgVSzJoFkdArtJo9ovi+HV9lChoBmgJaA9DCFzGTQ00TxDAlIaUUpRoFUsyaBZHQK7SLG3F1jl1fZQoaAZoCWgPQwj7y+7Jw8IDwJSGlFKUaBVLMmgWR0Cu092MCLdfdX2UKGgGaAloD0MIPN154jnbCsCUhpRSlGgVSzJoFkdArtOggJTl1nV9lChoBmgJaA9DCF+0xwvpIBnAlIaUUpRoFUsyaBZHQK7TYMxXXAd1fZQoaAZoCWgPQwjFxryOOCQFwJSGlFKUaBVLMmgWR0Cu0yQX668QdX2UKGgGaAloD0MIWyTtRh8zGMCUhpRSlGgVSzJoFkdArtS/n0TURXV9lChoBmgJaA9DCBJsXP+ubwvAlIaUUpRoFUsyaBZHQK7UgmygPEt1fZQoaAZoCWgPQwjLZaNzfkoCwJSGlFKUaBVLMmgWR0Cu1EIjv/ipdX2UKGgGaAloD0MI1PGYgcoYCsCUhpRSlGgVSzJoFkdArtQFYB/7SHV9lChoBmgJaA9DCHui68IPDgTAlIaUUpRoFUsyaBZHQK7Vnn3+MqB1fZQoaAZoCWgPQwgrieyDLCsCwJSGlFKUaBVLMmgWR0Cu1WFoUSIydX2UKGgGaAloD0MIUPutnSg5HcCUhpRSlGgVSzJoFkdArtUhS9/SY3V9lChoBmgJaA9DCKlQ3Vz87QjAlIaUUpRoFUsyaBZHQK7U5Lkjopx1fZQoaAZoCWgPQwgVU+knnB0DwJSGlFKUaBVLMmgWR0Cu1oKjafz0dX2UKGgGaAloD0MIDykGSDQREMCUhpRSlGgVSzJoFkdArtZFe4TbnHV9lChoBmgJaA9DCN1dZ0P+qRjAlIaUUpRoFUsyaBZHQK7WBS4OMER1fZQoaAZoCWgPQwjD1JY6yOsDwJSGlFKUaBVLMmgWR0Cu1cjFyaNNdX2UKGgGaAloD0MI6q7sgsE1HcCUhpRSlGgVSzJoFkdArtfGzOX3QHV9lChoBmgJaA9DCCWuY1xxUQvAlIaUUpRoFUsyaBZHQK7XikeIVM51fZQoaAZoCWgPQwiVtU3xuGgGwJSGlFKUaBVLMmgWR0Cu10qgqVhTdX2UKGgGaAloD0MICMcsexIYCcCUhpRSlGgVSzJoFkdArtcOyon8bnV9lChoBmgJaA9DCL0bCwqDkhTAlIaUUpRoFUsyaBZHQK7ZMMkQf6p1fZQoaAZoCWgPQwgg0m9fBx4VwJSGlFKUaBVLMmgWR0Cu2PQ7LdN4dX2UKGgGaAloD0MIZaiKqfQzGsCUhpRSlGgVSzJoFkdArti07p3X7XV9lChoBmgJaA9DCA4uHXOekRHAlIaUUpRoFUsyaBZHQK7YeOIZZSx1fZQoaAZoCWgPQwi+9WG9UUsJwJSGlFKUaBVLMmgWR0Cu2odwNsnBdX2UKGgGaAloD0MIpYXLKmymAcCUhpRSlGgVSzJoFkdArtpK0+kgwHV9lChoBmgJaA9DCKlLxjGSvQDAlIaUUpRoFUsyaBZHQK7aCx6fJ3h1fZQoaAZoCWgPQwgVcM/zp00BwJSGlFKUaBVLMmgWR0Cu2c87QswtdX2UKGgGaAloD0MI0CaHTzqRAMCUhpRSlGgVSzJoFkdArtvr19ORDHV9lChoBmgJaA9DCDrJVpdTIgTAlIaUUpRoFUsyaBZHQK7brzz3AVR1fZQoaAZoCWgPQwh41QPmIbMKwJSGlFKUaBVLMmgWR0Cu22+eFtbcdX2UKGgGaAloD0MIiLg5lQzABMCUhpRSlGgVSzJoFkdArtszyBkI5nV9lChoBmgJaA9DCFUxlX7C2QDAlIaUUpRoFUsyaBZHQK7dYdNnGsF1fZQoaAZoCWgPQwj4jERoBBsIwJSGlFKUaBVLMmgWR0Cu3SWIO6NEdX2UKGgGaAloD0MIizVc5J6eEMCUhpRSlGgVSzJoFkdArtzm3Ytg8nV9lChoBmgJaA9DCOHTnLzIhAjAlIaUUpRoFUsyaBZHQK7cqtfXwsp1fZQoaAZoCWgPQwjZ0TjU72IBwJSGlFKUaBVLMmgWR0Cu3lQS8J2MdX2UKGgGaAloD0MIcF6c+GonCcCUhpRSlGgVSzJoFkdArt4XWWhRInV9lChoBmgJaA9DCGVQbXAiuhrAlIaUUpRoFUsyaBZHQK7d1003wTd1fZQoaAZoCWgPQwjghEIEHIILwJSGlFKUaBVLMmgWR0Cu3ZrPldTpdX2UKGgGaAloD0MIdzHNdK+jF8CUhpRSlGgVSzJoFkdArt8y3PRiPXV9lChoBmgJaA9DCKzgtyHGywbAlIaUUpRoFUsyaBZHQK7e9dGAkLR1fZQoaAZoCWgPQwhVwD3Pn3YMwJSGlFKUaBVLMmgWR0Cu3rXHzYmLdX2UKGgGaAloD0MICKwcWmS7B8CUhpRSlGgVSzJoFkdArt55HTZxrHV9lChoBmgJaA9DCBYW3A940BzAlIaUUpRoFUsyaBZHQK7gHGHYYix1fZQoaAZoCWgPQwhs7uh/uRYCwJSGlFKUaBVLMmgWR0Cu398+7lJZdX2UKGgGaAloD0MI8djPYinSBcCUhpRSlGgVSzJoFkdArt+fB7/n4nV9lChoBmgJaA9DCCIXnMHfTw7AlIaUUpRoFUsyaBZHQK7fYoFV1fV1fZQoaAZoCWgPQwhKmGn7V7YAwJSGlFKUaBVLMmgWR0Cu4P/YraufdX2UKGgGaAloD0MIu16aIsDpEsCUhpRSlGgVSzJoFkdAruDDJwKjSHV9lChoBmgJaA9DCDxp4bIKaxPAlIaUUpRoFUsyaBZHQK7ggt/WlM11fZQoaAZoCWgPQwhPkxlvK/0BwJSGlFKUaBVLMmgWR0Cu4EYm1IAfdX2UKGgGaAloD0MIcHoX78dtBsCUhpRSlGgVSzJoFkdAruHeS0Sh8XV9lChoBmgJaA9DCL5muWx0LgLAlIaUUpRoFUsyaBZHQK7hoXWOIZZ1fZQoaAZoCWgPQwggX0IFh9cBwJSGlFKUaBVLMmgWR0Cu4WFT3qRmdX2UKGgGaAloD0MI3gAz38HfF8CUhpRSlGgVSzJoFkdAruEk2tMfzXV9lChoBmgJaA9DCMo0mlyM8RDAlIaUUpRoFUsyaBZHQK7iujt5UtJ1fZQoaAZoCWgPQwjJycStgtgGwJSGlFKUaBVLMmgWR0Cu4n0lRgqmdX2UKGgGaAloD0MI3CxeLAwBHcCUhpRSlGgVSzJoFkdAruI863iJf3V9lChoBmgJaA9DCIi4OZUMABDAlIaUUpRoFUsyaBZHQK7iADXe3x51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x791be0a9f9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x791be0a9a900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1800000, "_total_timesteps": 1800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690075317040334577, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgZzfPt67NT2QDxc/gZzfPt67NT2QDxc/gZzfPt67NT2QDxc/gZzfPt67NT2QDxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPfhHvpAMD776RTY/RRR/vXQvfb5udBq9/L9Bvvp/3D78nL2+m0LYP6pZxL+BYK0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuBnN8+3rs1PZAPFz8kujs7M/YrOyZpcTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4367409 0.04436862 0.5900812 ]\n [0.4367409 0.04436862 0.5900812 ]\n [0.4367409 0.04436862 0.5900812 ]\n [0.4367409 0.04436862 0.5900812 ]]", "desired_goal": "[[-0.19528289 -0.13969636 0.71200526]\n [-0.06227519 -0.24725133 -0.03770869]\n [-0.18920892 0.43066388 -0.37033832]\n [ 1.6895326 -1.5339863 1.3545076 ]]", "observation": "[[0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]\n [0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]\n [0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]\n [0.4367409 0.04436862 0.5900812 0.00286449 0.00262393 0.00368364]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXT3hvSm+4z1G+h8+RKUCvsCkkL1Aryg+d8TxPc0dDD705D4+1yPvvQAjdL3W0mU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10998032 0.11120255 0.15622815]\n [-0.12758356 -0.07062674 0.16473103]\n [ 0.11805051 0.13683243 0.18642026]\n [-0.11676758 -0.05960369 0.22443709]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYqOs30xM+7+UhpRSlIwBbJRLMowBdJRHQLLzjL39JjF1fZQoaAZoCWgPQwhKQiJt40/8v5SGlFKUaBVLMmgWR0Cy828nAqNIdX2UKGgGaAloD0MILIApAwe0BsCUhpRSlGgVSzJoFkdAsvNR/BnBcnV9lChoBmgJaA9DCNRFCmXha/2/lIaUUpRoFUsyaBZHQLLzNWxhUip1fZQoaAZoCWgPQwjNBplk5EwDwJSGlFKUaBVLMmgWR0Cy8/6raM72dX2UKGgGaAloD0MI/u+ICtXN+r+UhpRSlGgVSzJoFkdAsvPhHlOoHnV9lChoBmgJaA9DCA9Iwr6d5ADAlIaUUpRoFUsyaBZHQLLzw+qR2bJ1fZQoaAZoCWgPQwh0e0ljtE4FwJSGlFKUaBVLMmgWR0Cy86ddmg8KdX2UKGgGaAloD0MIo3a/CvAd/7+UhpRSlGgVSzJoFkdAsvRyg13t8nV9lChoBmgJaA9DCJVGzOzz2ALAlIaUUpRoFUsyaBZHQLL0VRB/qgR1fZQoaAZoCWgPQwhI/Io1XAQJwJSGlFKUaBVLMmgWR0Cy9Df779AHdX2UKGgGaAloD0MIUpyjjo6rA8CUhpRSlGgVSzJoFkdAsvQbhXKbKHV9lChoBmgJaA9DCEAUzJiCdQPAlIaUUpRoFUsyaBZHQLL05o0ALiN1fZQoaAZoCWgPQwiBe54/bVT6v5SGlFKUaBVLMmgWR0Cy9Mja9K28dX2UKGgGaAloD0MIAB+8dmmjAsCUhpRSlGgVSzJoFkdAsvSrs2NvO3V9lChoBmgJaA9DCIxn0NA/QQbAlIaUUpRoFUsyaBZHQLL0j0WdmQN1fZQoaAZoCWgPQwiwko/dBeoBwJSGlFKUaBVLMmgWR0Cy9VjF+/g0dX2UKGgGaAloD0MIIhtIF5uWAcCUhpRSlGgVSzJoFkdAsvU7CBPKuHV9lChoBmgJaA9DCOBL4UGzawPAlIaUUpRoFUsyaBZHQLL1HcFQl8h1fZQoaAZoCWgPQwjw+WGE8GgGwJSGlFKUaBVLMmgWR0Cy9QF/YraudX2UKGgGaAloD0MIK08g7BTLAcCUhpRSlGgVSzJoFkdAsvXKHoHLR3V9lChoBmgJaA9DCAU1fAvrBgLAlIaUUpRoFUsyaBZHQLL1rLidat91fZQoaAZoCWgPQwgIc7uX+2QAwJSGlFKUaBVLMmgWR0Cy9Y/CEYfodX2UKGgGaAloD0MIkzmWd9UDAMCUhpRSlGgVSzJoFkdAsvVzio86m3V9lChoBmgJaA9DCCKMn8a9Ofi/lIaUUpRoFUsyaBZHQLL2OShakh11fZQoaAZoCWgPQwimDBzQ0lX/v5SGlFKUaBVLMmgWR0Cy9ht+b3GodX2UKGgGaAloD0MIwy6KHviY/7+UhpRSlGgVSzJoFkdAsvX+Qq7ROXV9lChoBmgJaA9DCIwUysLXdwXAlIaUUpRoFUsyaBZHQLL14depn6F1fZQoaAZoCWgPQwgg8MAAwgf/v5SGlFKUaBVLMmgWR0Cy9rhKpT/AdX2UKGgGaAloD0MIO4+K/zui/b+UhpRSlGgVSzJoFkdAsvaaugYgq3V9lChoBmgJaA9DCEjcY+lD1/2/lIaUUpRoFUsyaBZHQLL2fcawUxp1fZQoaAZoCWgPQwhRZ+4h4VsAwJSGlFKUaBVLMmgWR0Cy9mGPLgXNdX2UKGgGaAloD0MIjiEAOPYsAMCUhpRSlGgVSzJoFkdAsvct7sv7FnV9lChoBmgJaA9DCGJodXKG4v6/lIaUUpRoFUsyaBZHQLL3EFFUhmp1fZQoaAZoCWgPQwgD6WLTSmH4v5SGlFKUaBVLMmgWR0Cy9vM7uDzzdX2UKGgGaAloD0MIRMTNqWQA+b+UhpRSlGgVSzJoFkdAsvbWwu/UOXV9lChoBmgJaA9DCOw00lJ5WwLAlIaUUpRoFUsyaBZHQLL3n71qWTp1fZQoaAZoCWgPQwiyg0pcxxgDwJSGlFKUaBVLMmgWR0Cy94ILsruqdX2UKGgGaAloD0MIrdo1Ia1RBcCUhpRSlGgVSzJoFkdAsvdkuqWC3HV9lChoBmgJaA9DCPFFe7yQDvu/lIaUUpRoFUsyaBZHQLL3SCBPKuB1fZQoaAZoCWgPQwiQn41cNwUDwJSGlFKUaBVLMmgWR0Cy+CBDTjNqdX2UKGgGaAloD0MIfeasTzkmAsCUhpRSlGgVSzJoFkdAsvgCoJiRXHV9lChoBmgJaA9DCIv7j0yHrgPAlIaUUpRoFUsyaBZHQLL35ZpztC11fZQoaAZoCWgPQwgbLQd6qK0BwJSGlFKUaBVLMmgWR0Cy98lBlcyFdX2UKGgGaAloD0MIIcuCiT/K/L+UhpRSlGgVSzJoFkdAsviZlI3BHnV9lChoBmgJaA9DCL/XEByX8QTAlIaUUpRoFUsyaBZHQLL4fBeokzJ1fZQoaAZoCWgPQwgJjWDj+jcBwJSGlFKUaBVLMmgWR0Cy+F7NSqEOdX2UKGgGaAloD0MIYDqt26C2+r+UhpRSlGgVSzJoFkdAsvhCOIZZS3V9lChoBmgJaA9DCAe2SrA4XAHAlIaUUpRoFUsyaBZHQLL5C9w3o9t1fZQoaAZoCWgPQwggDDz3Hs4CwJSGlFKUaBVLMmgWR0Cy+O4+OfdzdX2UKGgGaAloD0MIpYY2ABvQ/r+UhpRSlGgVSzJoFkdAsvjQ8gZCOXV9lChoBmgJaA9DCPD49q5BH/q/lIaUUpRoFUsyaBZHQLL4tF2FFlV1fZQoaAZoCWgPQwgxRbk0fmHtv5SGlFKUaBVLMmgWR0Cy+YmfseGPdX2UKGgGaAloD0MIdjV5ymo6AcCUhpRSlGgVSzJoFkdAsvlr52yLRHV9lChoBmgJaA9DCPnzbcFSfQTAlIaUUpRoFUsyaBZHQLL5TrNGEwp1fZQoaAZoCWgPQwhg6BGj5xb5v5SGlFKUaBVLMmgWR0Cy+TI11nuidX2UKGgGaAloD0MITBdi9UeY/b+UhpRSlGgVSzJoFkdAsvoGzSkTH3V9lChoBmgJaA9DCJXx7zMuHAPAlIaUUpRoFUsyaBZHQLL56TsY2sJ1fZQoaAZoCWgPQwh7TKQ0m2cDwJSGlFKUaBVLMmgWR0Cy+cwDvE0jdX2UKGgGaAloD0MIowIn28Bd/L+UhpRSlGgVSzJoFkdAsvmvkBCD3HV9lChoBmgJaA9DCD9W8NsQYwHAlIaUUpRoFUsyaBZHQLL6eGbTc7B1fZQoaAZoCWgPQwiBk23gDhT+v5SGlFKUaBVLMmgWR0Cy+lrHuJDWdX2UKGgGaAloD0MIho+IKZGkA8CUhpRSlGgVSzJoFkdAsvo9dv863nV9lChoBmgJaA9DCHTS+8bX3vq/lIaUUpRoFUsyaBZHQLL6IQMhHLB1fZQoaAZoCWgPQwiZ8iGoGv0BwJSGlFKUaBVLMmgWR0Cy+u8PjGT+dX2UKGgGaAloD0MIehhanZyhAsCUhpRSlGgVSzJoFkdAsvrRbaAWi3V9lChoBmgJaA9DCFKdDmQ9Nfy/lIaUUpRoFUsyaBZHQLL6tCswL3N1fZQoaAZoCWgPQwgA/5QqUVYBwJSGlFKUaBVLMmgWR0Cy+peYplSTdX2UKGgGaAloD0MI0ZSdflAXAcCUhpRSlGgVSzJoFkdAsvtsaS9ug3V9lChoBmgJaA9DCOs1PSgopQbAlIaUUpRoFUsyaBZHQLL7TtTUAkt1fZQoaAZoCWgPQwjaU3JO7OEGwJSGlFKUaBVLMmgWR0Cy+zGSZBszdX2UKGgGaAloD0MI2GMipdk8A8CUhpRSlGgVSzJoFkdAsvsVGG21D3V9lChoBmgJaA9DCPg1kgThKgDAlIaUUpRoFUsyaBZHQLL74DeCTU11fZQoaAZoCWgPQwjNlUG1wSkDwJSGlFKUaBVLMmgWR0Cy+8KhcqvvdX2UKGgGaAloD0MIxxLWxtipBcCUhpRSlGgVSzJoFkdAsvulUhmoSHV9lChoBmgJaA9DCA9HV+nuOv+/lIaUUpRoFUsyaBZHQLL7iMJQcgh1fZQoaAZoCWgPQwizP1Bu29cGwJSGlFKUaBVLMmgWR0Cy/FRjvuw5dX2UKGgGaAloD0MI00uMZfrlAcCUhpRSlGgVSzJoFkdAsvw22Xsw+XV9lChoBmgJaA9DCKhRSDKr1wHAlIaUUpRoFUsyaBZHQLL8Ga6BiCt1fZQoaAZoCWgPQwj2JLA5B08GwJSGlFKUaBVLMmgWR0Cy+/0wnH/+dX2UKGgGaAloD0MIL/zgfOoYCsCUhpRSlGgVSzJoFkdAsvzMgHNX5nV9lChoBmgJaA9DCHsS2JyDJwHAlIaUUpRoFUsyaBZHQLL8rt/WlM11fZQoaAZoCWgPQwibOLnfoYgCwJSGlFKUaBVLMmgWR0Cy/JGtlqagdX2UKGgGaAloD0MIavZAKzCkAcCUhpRSlGgVSzJoFkdAsvx1MJx//nV9lChoBmgJaA9DCGQ9tfrqqgHAlIaUUpRoFUsyaBZHQLL9RIMBp6B1fZQoaAZoCWgPQwgYd4NorUgDwJSGlFKUaBVLMmgWR0Cy/SbofSx8dX2UKGgGaAloD0MI14aKcf7GAsCUhpRSlGgVSzJoFkdAsv0Js+FDfHV9lChoBmgJaA9DCDwx68VQTgPAlIaUUpRoFUsyaBZHQLL87Tg2qDN1fZQoaAZoCWgPQwg3bFuU2YABwJSGlFKUaBVLMmgWR0Cy/fFVLi++dX2UKGgGaAloD0MIeVxUi4hi/L+UhpRSlGgVSzJoFkdAsv3Uhr30w3V9lChoBmgJaA9DCGVR2EXRIwDAlIaUUpRoFUsyaBZHQLL9t9PUKAt1fZQoaAZoCWgPQwhkc9U8R0QCwJSGlFKUaBVLMmgWR0Cy/ZuPNmlJdX2UKGgGaAloD0MI0h3EzhQ6AcCUhpRSlGgVSzJoFkdAsv6kKohpxnV9lChoBmgJaA9DCCoZAKq4cfy/lIaUUpRoFUsyaBZHQLL+hrULDyh1fZQoaAZoCWgPQwjGGFjH8eMEwJSGlFKUaBVLMmgWR0Cy/mm6bvw3dX2UKGgGaAloD0MIllmEYiuoAMCUhpRSlGgVSzJoFkdAsv5Nb/wRXnV9lChoBmgJaA9DCFPNrKWAtP6/lIaUUpRoFUsyaBZHQLL/WICU5dZ1fZQoaAZoCWgPQwjcniCx3b0DwJSGlFKUaBVLMmgWR0Cy/zsWj45+dX2UKGgGaAloD0MIGvz9YrakAcCUhpRSlGgVSzJoFkdAsv8eO3lS0nV9lChoBmgJaA9DCGWqYFRSRwTAlIaUUpRoFUsyaBZHQLL/AfVI7Nl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 90000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -4.029850839683786, "std_reward": 1.697234761198281, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-22T14:09:28.534437"}
 
1
+ {"mean_reward": -2.753831952251494, "std_reward": 0.358636374552058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-23T02:42:56.687957"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b711ff333b841042325fd839ed16f83043eb96212ad8323b66e965b1018a88a4
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42e429a3b7788eb29c7c29404d7b0bd02766d133e929bb7557b4e41dc7640580
3
  size 2387