PPO-LunarLander-v2 / config.json
yeounyi's picture
increase timesteps to 3e6
f5f6f74
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad9aff6b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad9aff6c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad9aff6cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad9aff6d40>", "_build": "<function ActorCriticPolicy._build at 0x7fad9aff6dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7fad9aff6e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad9aff6ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad9aff6f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fad9aff7010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad9aff70a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad9aff7130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad9aff71c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fad9aff1cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3538944, "_total_timesteps": 20000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687851856692973689, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMHIz1bh5A/An8wPg+6M78JaHA9EkGZPQAAAAAAAAAAmum/Ort6mz2FUF+9WmGYvn2Aiztd14G8AAAAAAAAAACzQ2w929vmPe9oJDzETqC+AwVaPWezpjwAAAAAAAAAAIY5BT60gZ8/pksjP5SXIr94UAo+lifrPgAAAAAAAAAAk/pTPs2FWD6Gt8O+v53Bvlg6kr39d8G7AAAAAAAAAABtygc+zzpgPu67xr6jnsa+azTQvZB7/b0AAAAAAAAAAICLML6flwU/7CkrPk/kwr7DJrm9FWBdPgAAAAAAAAAAAEHzPZC3jz/6V6E+lOE2v2n/OT4OD1Q+AAAAAAAAAACaBLK8YmeJP2ALJLygDCK/hOhmvbugeDwAAAAAAAAAAM39gT1a9MM+IqKMvQGR6r6o2pS8JkhbvQAAAAAAAAAA82P3PQrRJ7t0K4o8RtLouul6ObxWeMm7AACAPwAAgD/muQI9uEa3uebdnbxdT+S1r3tAO0KQUzUAAAAAAAAAAGbu97tcWyO6EtcoNlpYijACejU5RuxFtQAAgD8AAIA/M5jhvOHA27om85c7kVmPPAuzkLv+qng9AACAPwAAgD9mcGO9kEWnP+6z1L4eUQi/26Zzvb5Lib4AAAAAAAAAAE3yjL0RTIM+nOk5PhdQ1r7y4Zg9NrpGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8230528, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKz6P0Zm7KMAWyUS7SMAXSUR0CzPbmi5/b1dX2UKGgGR0BxaKY3Ns3yaAdLymgIR0CzPblEVnEmdX2UKGgGR0BwUuPT5O8DaAdLtmgIR0CzPbx77bcodX2UKGgGR0BxvWez2OABaAdLrGgIR0CzPcnkcS5BdX2UKGgGR0BxUIF8ohIOaAdLzmgIR0CzPdArc0tRdX2UKGgGR0BzPWSEDhcaaAdLyWgIR0CzPdchC+lCdX2UKGgGR0By7SevpyIYaAdLr2gIR0CzPdoyCWeIdX2UKGgGR0BwY/tpmEoOaAdLzmgIR0CzPfunQ6ZIdX2UKGgGR0Bw2ND8cdYGaAdLumgIR0CzPg08NhE0dX2UKGgGR0ByDoNAkcCHaAdLvWgIR0CzPhq/EfkndX2UKGgGR0BxpnZK3/gjaAdLsGgIR0CzPiwRkEs8dX2UKGgGR0BvH1mJ3xFzaAdLwmgIR0CzPj952QnydX2UKGgGR0B0CKgdwNsnaAdLwWgIR0CzPkxIre67dX2UKGgGR0Bx8v7oB7u2aAdLzmgIR0CzPk1WXC0odX2UKGgGR0BxTQKPXCj2aAdLymgIR0CzPmsv24/edX2UKGgGR0Bw6BdfLLZBaAdLuGgIR0CzPngoLG70dX2UKGgGR0ByWIgLZzxPaAdLpGgIR0CzPoxvitJWdX2UKGgGR0BzRHWmP5pKaAdLu2gIR0CzPqdNzr/sdX2UKGgGR0BzZHdJrcj8aAdLrWgIR0CzPrcuBczJdX2UKGgGR0BwU7sniNsFaAdLzWgIR0CzPr+ZG8VYdX2UKGgGR0Bx5VOIqLCOaAdLz2gIR0CzPtEyLyc1dX2UKGgGR0BxoaaBqbjMaAdL2GgIR0CzPuLeVLSNdX2UKGgGR0Bwxyu2Zy+6aAdLtmgIR0CzPuV0DEFXdX2UKGgGR0Bz3vADaGpNaAdL3WgIR0CzPvBmf5DadX2UKGgGR0BwUVaouPFOaAdLx2gIR0CzPxnpr1ujdX2UKGgGR0Bw7v+uNgjRaAdLzGgIR0CzPzH8fmtAdX2UKGgGR0BzShXS0BwNaAdL42gIR0CzPzFfJFLGdX2UKGgGR0BwERfzBhx6aAdLw2gIR0CzPzoIjW07dX2UKGgGR0Byb3qlgtvoaAdLwWgIR0CzP0Ne+mFbdX2UKGgGR0BwvT3Dej20aAdLy2gIR0CzP07Zi/fwdX2UKGgGR0BwTsXQ+lj3aAdLtmgIR0CzP15TdcjadX2UKGgGR0ByooH/tICmaAdLzGgIR0CzP22Lgn+idX2UKGgGR0Bxrhga3qiXaAdL0GgIR0CzP5Go3rD7dX2UKGgGR0BxPrN2TxG2aAdLw2gIR0CzP6yqyWzGdX2UKGgGR0BxwR3IMjNZaAdL2GgIR0CzP7hu0kWzdX2UKGgGR0BycT7O3UhFaAdLz2gIR0CzP8OTNdJKdX2UKGgGR0BzhXPKMefaaAdLumgIR0CzP85ggHNYdX2UKGgGR0BwKakN4JNTaAdLwmgIR0CzP9WJ79hrdX2UKGgGR0ByjXX5FgDzaAdL4WgIR0CzP+paJQ+EdX2UKGgGR0BwqKLyc0+DaAdLx2gIR0CzP+kZNwirdX2UKGgGR0BwIHxwyZa3aAdLwmgIR0CzQCx55Z8sdX2UKGgGR0BxnbWJ79hraAdL22gIR0CzQC+A7PpqdX2UKGgGR0Bx4nWI42jxaAdL0WgIR0CzQDjriVB2dX2UKGgGR0BxxKeWfK6naAdL1WgIR0CzQFCu2Zy/dX2UKGgGR0BxAHs2NvOyaAdLsWgIR0CzQFCp3os7dX2UKGgGR0ByBcNmUW2xaAdL02gIR0CzQFmmce8xdX2UKGgGR0BxW60lZ5iWaAdLxGgIR0CzQFhOUMXrdX2UKGgGR0BzhSRYA80UaAdL72gIR0CzQF9DYywfdX2UKGgGR0BxQl76YVqOaAdLtWgIR0CzQI73j+72dX2UKGgGR0BxS94W1twaaAdLwGgIR0CzQKl7dBSldX2UKGgGR0BzNm7qY7aJaAdL32gIR0CzQKyjQAuJdX2UKGgGR0BxnSwaBI4EaAdLpmgIR0CzQLw6uGKydX2UKGgGR0BxVdRgqmTDaAdLyGgIR0CzQMvek56udX2UKGgGR0Bxy1bbDdgwaAdL2WgIR0CzQNVmJ3xGdX2UKGgGR0ByWiTJQtSRaAdLyWgIR0CzQNSMkyDadX2UKGgGR0BzFmIgvDgqaAdL4GgIR0CzQQqgh8pkdX2UKGgGR0Bw11ysCDEnaAdLt2gIR0CzQSL9uP3jdX2UKGgGR0Bzxidf9gndaAdLzWgIR0CzQUl+Vkc0dX2UKGgGR0By499NN8E3aAdLt2gIR0CzQWFxsEaEdX2UKGgGR0BzbkW/JvHcaAdLtmgIR0CzQWkVJtiydX2UKGgGR0ByxB/smfGuaAdLxmgIR0CzQXCvHLiddX2UKGgGR0BxkOSeRPoFaAdL3GgIR0CzQXc+u/1ydX2UKGgGR0BxwPiBGx2TaAdLzWgIR0CzQX1qBVdYdX2UKGgGR0ByAoxXXAdoaAdL0mgIR0CzQZBiTdLydX2UKGgGR0BzUJ/0/W1/aAdLyGgIR0CzQcvOhTOxdX2UKGgGR0BxGAbR4QjEaAdLumgIR0CzQgdxAB1cdX2UKGgGR0BxdWm4y44IaAdLtGgIR0CzQgpaFEiMdX2UKGgGR0Bx/TtdAxBWaAdL1mgIR0CzQgo6GQCCdX2UKGgGR0By0yEzwc5saAdLy2gIR0CzQhGm1pj+dX2UKGgGR0Bx3Cax5cC6aAdL22gIR0CzQhhStNi6dX2UKGgGR0BxqFeTmnwYaAdLrGgIR0CzQj7NSqEOdX2UKGgGR0Bx5yiWVu76aAdL32gIR0CzQlOO0b97dX2UKGgGR0Byq5hfBvaUaAdLr2gIR0CzQlkGRmsedX2UKGgGR0BxIIFNcnmaaAdLxGgIR0CzQqCK3uuzdX2UKGgGR0BzjAvIwM6SaAdLtWgIR0CzQrY55qubdX2UKGgGR0BxPI51eSjhaAdLvWgIR0CzQr79AHE/dX2UKGgGR0Bxq3HbRF7VaAdLzmgIR0CzQtAR5C4SdX2UKGgGR0Bw3Z1cMVk+aAdL12gIR0CzQtnpB5X2dX2UKGgGR0BwnybPQfITaAdLyWgIR0CzQu/MKTjedX2UKGgGR0By5Wr8zhxYaAdL6WgIR0CzQwefqX4TdX2UKGgGR0BxsVujynUEaAdLqmgIR0CzQzTslb/wdX2UKGgGR0Bvt3kzXSSeaAdLrGgIR0CzQ0vu1F6SdX2UKGgGR0Bys19x6v7naAdLtmgIR0CzQ1FMRHwxdX2UKGgGR0BvAm8f3evZaAdLvWgIR0CzQ2CT+vQodX2UKGgGR0BvrGOAAhjfaAdLuWgIR0CzQ2FAzHjqdX2UKGgGR0BvSnu/k/8maAdLrmgIR0CzQ4AYgq3FdX2UKGgGR0Bxzb2criEQaAdLtmgIR0CzQ6eZgG8mdX2UKGgGR0BxGGsPrfLtaAdLzGgIR0CzQ94MWoFWdX2UKGgGR0Bzgrd9Dx9YaAdLwWgIR0CzRCAuVX3hdX2UKGgGR0BvfwoAn2IwaAdLvGgIR0CzRC+UyHmBdX2UKGgGR0BxRrz4DcM3aAdLr2gIR0CzRDzwpe/pdX2UKGgGR0Bwk6GXXyy2aAdLu2gIR0CzREupjtojdX2UKGgGR0BxGFLg4wRHaAdLz2gIR0CzRGMn7YTTdX2UKGgGR0BucEtGus90aAdLs2gIR0CzRGKw2VFAdX2UKGgGR0Bw+LXRPXTWaAdLwGgIR0CzRJiGetjkdX2UKGgGR0BxyhXKbKA8aAdLwmgIR0CzRPNOEdvLdX2UKGgGR0Bwk+q0dBBzaAdL1mgIR0CzRQQd8zAOdX2UKGgGR0BwVup1ie/YaAdLt2gIR0CzRRFPi1iOdX2UKGgGR0ByvZCx/ustaAdLymgIR0CzRRfTCtRvdX2UKGgGR0Bzf9hDw6QvaAdLz2gIR0CzRSTnNgSfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1075, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}