update model card README.md
Browse files
README.md
CHANGED
@@ -14,12 +14,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [ydmeira/beit-finetuned-pokemon](https://huggingface.co/ydmeira/beit-finetuned-pokemon) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
-
- Per Category Iou: [0.0, 0.
|
22 |
-
- Per Category Accuracy: [nan, 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,35 +44,31 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch | Step
|
52 |
-
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.0266 | 1.6 | 7500 | 0.0234 | 0.4962 | 0.9924 | 0.9924 | [0.0, 0.9923954115635184] | [nan, 0.9923954115635184] |
|
68 |
-
| 0.0223 | 1.71 | 8000 | 0.0264 | 0.4964 | 0.9928 | 0.9928 | [0.0, 0.9928421413266322] | [nan, 0.9928421413266322] |
|
69 |
-
| 0.0212 | 1.81 | 8500 | 0.0235 | 0.4960 | 0.9920 | 0.9920 | [0.0, 0.9920402354291824] | [nan, 0.9920402354291824] |
|
70 |
-
| 0.0196 | 1.92 | 9000 | 0.0222 | 0.4964 | 0.9927 | 0.9927 | [0.0, 0.9927382211696605] | [nan, 0.9927382211696605] |
|
71 |
|
72 |
|
73 |
### Framework versions
|
74 |
|
75 |
-
- Transformers 4.
|
76 |
- Pytorch 1.12.1+cu113
|
77 |
- Datasets 2.4.0
|
78 |
- Tokenizers 0.12.1
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [ydmeira/beit-finetuned-pokemon](https://huggingface.co/ydmeira/beit-finetuned-pokemon) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0219
|
18 |
+
- Mean Iou: 0.4955
|
19 |
+
- Mean Accuracy: 0.9910
|
20 |
+
- Overall Accuracy: 0.9910
|
21 |
+
- Per Category Iou: [0.0, 0.9909617791470107]
|
22 |
+
- Per Category Accuracy: [nan, 0.9909617791470107]
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 3
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------:|:-------------------------:|
|
53 |
+
| 0.0354 | 0.21 | 1000 | 0.0347 | 0.4978 | 0.9955 | 0.9955 | [0.0, 0.9955007125868244] | [nan, 0.9955007125868244] |
|
54 |
+
| 0.0273 | 0.43 | 2000 | 0.0277 | 0.4951 | 0.9903 | 0.9903 | [0.0, 0.9902709092544748] | [nan, 0.9902709092544748] |
|
55 |
+
| 0.0307 | 0.64 | 3000 | 0.0788 | 0.4875 | 0.9751 | 0.9751 | [0.0, 0.9750850921785902] | [nan, 0.9750850921785902] |
|
56 |
+
| 0.0295 | 0.85 | 4000 | 0.0412 | 0.4939 | 0.9877 | 0.9877 | [0.0, 0.9877162657609527] | [nan, 0.9877162657609527] |
|
57 |
+
| 0.0255 | 1.07 | 5000 | 0.0842 | 0.4862 | 0.9723 | 0.9723 | [0.0, 0.972304346385062] | [nan, 0.972304346385062] |
|
58 |
+
| 0.0253 | 1.28 | 6000 | 0.0325 | 0.4950 | 0.9901 | 0.9901 | [0.0, 0.9900621363084688] | [nan, 0.9900621363084688] |
|
59 |
+
| 0.0239 | 1.49 | 7000 | 0.0440 | 0.4917 | 0.9835 | 0.9835 | [0.0, 0.9834701005512881] | [nan, 0.9834701005512881] |
|
60 |
+
| 0.0238 | 1.71 | 8000 | 0.0338 | 0.4950 | 0.9900 | 0.9900 | [0.0, 0.9899977115151821] | [nan, 0.9899977115151821] |
|
61 |
+
| 0.0223 | 1.92 | 9000 | 0.0319 | 0.4950 | 0.9900 | 0.9900 | [0.0, 0.989994712810938] | [nan, 0.989994712810938] |
|
62 |
+
| 0.0231 | 2.13 | 10000 | 0.0382 | 0.4921 | 0.9841 | 0.9841 | [0.0, 0.984106425591889] | [nan, 0.984106425591889] |
|
63 |
+
| 0.0205 | 2.35 | 11000 | 0.0450 | 0.4926 | 0.9851 | 0.9851 | [0.0, 0.9851146530893756] | [nan, 0.9851146530893756] |
|
64 |
+
| 0.0201 | 2.56 | 12000 | 0.0265 | 0.4954 | 0.9908 | 0.9908 | [0.0, 0.9908277212846449] | [nan, 0.9908277212846449] |
|
65 |
+
| 0.0188 | 2.77 | 13000 | 0.0377 | 0.4933 | 0.9866 | 0.9866 | [0.0, 0.9865726862234793] | [nan, 0.9865726862234793] |
|
66 |
+
| 0.0181 | 2.99 | 14000 | 0.0219 | 0.4955 | 0.9910 | 0.9910 | [0.0, 0.9909617791470107] | [nan, 0.9909617791470107] |
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
+
- Transformers 4.22.1
|
72 |
- Pytorch 1.12.1+cu113
|
73 |
- Datasets 2.4.0
|
74 |
- Tokenizers 0.12.1
|