File size: 2,792 Bytes
f387863 eebddcc a47a147 2ea8baa f387863 eebddcc f387863 dda4f80 f59a57b e38a37a eebddcc dda4f80 e38a37a dda4f80 5e5fda0 eebddcc 7069d9a d5c900f be2b397 a13afb9 d5c900f be2b397 d5c900f be2b397 d5c900f be2b397 eebddcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
tags:
- BERT
- token-classification
- sequence-tagger-model
language:
- ar
- en
license: mit
datasets:
- ACE2005
---
# Arabic NER Model
- [Github repo](https://github.com/edchengg/GigaBERT)
- NER BIO tagging model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English).
- ACE2005 Training data: English + Arabic
- [NER tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf) including: PER, VEH, GPE, WEA, ORG, LOC, FAC
## Hyperparameters
- learning_rate=2e-5
- num_train_epochs=10
- weight_decay=0.01
## ACE2005 Evaluation results (F1)
| Language | Arabic | English |
|:----:|:-----------:|:----:|
| | 89.4 | 88.8 |
## How to use
```python
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
>>> output = ner_pip('Protests break out across the US after Supreme Court overturns.')
>>> print(output)
[{'entity_group': 'GPE', 'score': 0.9979881, 'word': 'us', 'start': 30, 'end': 32}, {'entity_group': 'ORG', 'score': 0.99898684, 'word': 'supreme court', 'start': 39, 'end': 52}]
>>> output = ner_pip('ูุงู ูุฒูุฑ ุงูุนุฏู ุงูุชุฑูู ุจููุฑ ุจูุฒุฏุงุบ ุฅู ุฃููุฑุฉ ุชุฑูุฏ 12 ู
ุดุชุจูุงู ุจูู
ู
ู ููููุฏุง ู 21 ู
ู ุงูุณููุฏ')
>>> print(output)
[{'entity_group': 'PER', 'score': 0.9996214, 'word': 'ูุฒูุฑ', 'start': 4, 'end': 8}, {'entity_group': 'ORG', 'score': 0.9952383, 'word': 'ุงูุนุฏู', 'start': 9, 'end': 14}, {'entity_group': 'GPE', 'score': 0.9996675, 'word': 'ุงูุชุฑูู', 'start': 15, 'end': 21}, {'entity_group': 'PER', 'score': 0.9978992, 'word': 'ุจููุฑ ุจูุฒุฏุงุบ', 'start': 22, 'end': 33}, {'entity_group': 'GPE', 'score': 0.9997154, 'word': 'ุงููุฑุฉ', 'start': 37, 'end': 42}, {'entity_group': 'PER', 'score': 0.9946885, 'word': 'ู
ุดุชุจูุง ุจูู
', 'start': 51, 'end': 62}, {'entity_group': 'GPE', 'score': 0.99967396, 'word': 'ููููุฏุง', 'start': 66, 'end': 72}, {'entity_group': 'PER', 'score': 0.99694425, 'word': '21', 'start': 75, 'end': 77}, {'entity_group': 'GPE', 'score': 0.99963355, 'word': 'ุงูุณููุฏ', 'start': 81, 'end': 87}]
```
### BibTeX entry and citation info
```bibtex
@inproceedings{lan2020gigabert,
author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan},
title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic},
booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)},
year = {2020}
}
```
|