Update llama_xformers_attention.py
Browse files- llama_xformers_attention.py +108 -0
llama_xformers_attention.py
CHANGED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
from transformers.models.llama.modeling_llama import LlamaAttention
|
7 |
+
|
8 |
+
class LlamaXFormersAttention(LlamaAttention):
|
9 |
+
def forward(
|
10 |
+
self,
|
11 |
+
hidden_states: torch.Tensor,
|
12 |
+
attention_mask: Optional[torch.Tensor] = None,
|
13 |
+
position_ids: Optional[torch.LongTensor] = None,
|
14 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
15 |
+
output_attentions: bool = False,
|
16 |
+
use_cache: bool = False,
|
17 |
+
**kwargs,
|
18 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
19 |
+
if "padding_mask" in kwargs:
|
20 |
+
warnings.warn(
|
21 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
22 |
+
)
|
23 |
+
|
24 |
+
bsz, q_len, _ = hidden_states.size()
|
25 |
+
|
26 |
+
if self.config.pretraining_tp > 1:
|
27 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
28 |
+
query_slices = self.q_proj.weight.split(
|
29 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
30 |
+
)
|
31 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
32 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
33 |
+
|
34 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
35 |
+
query_states = torch.cat(query_states, dim=-1)
|
36 |
+
|
37 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
38 |
+
key_states = torch.cat(key_states, dim=-1)
|
39 |
+
|
40 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
41 |
+
value_states = torch.cat(value_states, dim=-1)
|
42 |
+
|
43 |
+
else:
|
44 |
+
query_states = self.q_proj(hidden_states)
|
45 |
+
key_states = self.k_proj(hidden_states)
|
46 |
+
value_states = self.v_proj(hidden_states)
|
47 |
+
|
48 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
49 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
50 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
51 |
+
|
52 |
+
kv_seq_len = key_states.shape[-2]
|
53 |
+
if past_key_value is not None:
|
54 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
55 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
56 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
57 |
+
|
58 |
+
if past_key_value is not None:
|
59 |
+
# reuse k, v, self_attention
|
60 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
61 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
62 |
+
|
63 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
64 |
+
|
65 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
66 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
67 |
+
|
68 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
69 |
+
|
70 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
71 |
+
raise ValueError(
|
72 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
73 |
+
f" {attn_weights.size()}"
|
74 |
+
)
|
75 |
+
|
76 |
+
if attention_mask is not None:
|
77 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
78 |
+
raise ValueError(
|
79 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
80 |
+
)
|
81 |
+
attn_weights = attn_weights + attention_mask
|
82 |
+
|
83 |
+
# upcast attention to fp32
|
84 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
85 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
86 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
87 |
+
|
88 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
89 |
+
raise ValueError(
|
90 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
91 |
+
f" {attn_output.size()}"
|
92 |
+
)
|
93 |
+
|
94 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
95 |
+
|
96 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
97 |
+
|
98 |
+
if self.config.pretraining_tp > 1:
|
99 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
100 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
101 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
102 |
+
else:
|
103 |
+
attn_output = self.o_proj(attn_output)
|
104 |
+
|
105 |
+
if not output_attentions:
|
106 |
+
attn_weights = None
|
107 |
+
|
108 |
+
return attn_output, attn_weights, past_key_value
|