ybelkada commited on
Commit
365deed
·
1 Parent(s): 76081f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -2
README.md CHANGED
@@ -53,12 +53,40 @@ pipeline_tag: text-generation
53
  ---
54
 
55
  <h1 style='text-align: center '>BLOOM LM - 8bit</h1>
56
- <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2>
57
  <h3 style='text-align: center '>Model Card</h3>
58
  <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
59
 
60
  Version 1.0 / 26.May.2022
61
 
62
- To be announced soon - related paper: https://arxiv.org/abs/2208.07339
63
 
 
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ---
54
 
55
  <h1 style='text-align: center '>BLOOM LM - 8bit</h1>
56
+ <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model - 8bit</em> </h2>
57
  <h3 style='text-align: center '>Model Card</h3>
58
  <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
59
 
60
  Version 1.0 / 26.May.2022
61
 
62
+ Related paper: https://arxiv.org/abs/2208.07339
63
 
64
+ ## TL;DR
65
 
66
+ This repository contains 8bit weights of `bloom-1b7` model. You can load this model using `transformers==4.28.0` and `bitsandbytes>0.37.2` out of the box !
67
+
68
+ ```python
69
+ # pip install accelerate bitsandbytes
70
+ from transformers import AutoModelForCausalLM
71
+
72
+ model = AutoModelForCausalLM.from_pretrained("ybelkada/bloom-1b7-8bit")
73
+ ```
74
+
75
+ ## How to push 8bit weights?
76
+
77
+ First, make sure you are using `transformers` & `bitsandbytes` versions stated above. Then load your 8bit model as usual using `load_in_8bit=True`!
78
+
79
+ ```python
80
+ # pip install accelerate bitsandbytes
81
+ from transformers import AutoModelForCausalLM
82
+
83
+ model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b7", device_map="auto", load_in_8bit=True)
84
+ ```
85
+
86
+ Then just call `push_to_hub` method or `save_pretrained` method if you want to save your 8bit model locally
87
+
88
+ ```python
89
+ model.push_to_hub("{your_username}/bloom-1b7-8bit")
90
+ ```
91
+
92
+ That's it!