Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.19 +/- 0.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:939f7827e10b5455b0a342a59a5dcbb0daec4367c3ca32d71bb03a245b2d034f
|
3 |
+
size 107977
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc15a50b640>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc15a6fe440>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1693651180189122914,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0OD3vrJc3z5bVqM+Oj5Lv4qVrD+uwpi/WX/7vs8o5L7cEaY+LAwIvkrd4T714Ng+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoXzFvmd6tD+MD8w/az2zvgBsyT+wen6/KT0TvVi1xr//3nk/ERjoPsHF0T+on6w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQ4Pe+slzfPltWoz71F0C/N+3YP9dRXD86Pku/ipWsP67CmL/DYFu/cqmIPzWBcb9Zf/u+zyjkvtwRpj7nPU+/gmzYv6uMXz8sDAi+St3hPvXg2D74BD8+XvrePzp1ij+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.48413706 0.43625408 0.31901821]\n [-0.79391825 1.3483136 -1.1934412 ]\n [-0.49120596 -0.44562384 0.324355 ]\n [-0.13285893 0.44114143 0.4235913 ]]",
|
34 |
+
"desired_goal": "[[-0.38571647 1.4099854 1.5942245 ]\n [-0.35007796 1.5736084 -0.99405956]\n [-0.035947 -1.5524092 0.9760589 ]\n [ 0.4533086 1.6388475 0.33715558]]",
|
35 |
+
"observation": "[[-0.48413706 0.43625408 0.31901821 -0.75036556 1.6947392 0.8606238 ]\n [-0.79391825 1.3483136 -1.1934412 -0.8569452 1.0676711 -0.9433778 ]\n [-0.49120596 -0.44562384 0.324355 -0.8095383 -1.6908114 0.8732402 ]\n [-0.13285893 0.44114143 0.4235913 0.18654239 1.7420156 1.0817025 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKqz5vZ/XCb6YjAE+9rZqPAt1WDwveYU+tgggPb+M6r2hS489yk2bO7zDgj2uuSs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.12191041 -0.13461159 0.12651289]\n [ 0.01432585 0.0132115 0.26069018]\n [ 0.03907081 -0.11452626 0.06996847]\n [ 0.0047395 0.0638499 0.1677005 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv5yCWeHzpX+MAWyUSwGMAXSUR0CP8/rj5sTGdX2UKGgGR7/iDLbHp8neaAdLBmgIR0CP8qvKU3XJdX2UKGgGR7/L0yP+4smOaAdLA2gIR0CP85YbsF+vdX2UKGgGR7/N4QBgeA/caAdLA2gIR0CP8yZDzAerdX2UKGgGR7/E1og3cYZVaAdLA2gIR0CP9BM6ij+KdX2UKGgGR7/M9FnZkCmuaAdLA2gIR0CP8sSvC/GmdX2UKGgGR7/N0tAcDKYBaAdLA2gIR0CP86ysS00FdX2UKGgGR7/Kt/4IrvsraAdLA2gIR0CP8z0T101ZdX2UKGgGR7+iHVPN3W4FaAdLAWgIR0CP8szw+dK/dX2UKGgGR7/EIrvsqrimaAdLAmgIR0CP9CM/hVENdX2UKGgGR7+5Cw8nuy/saAdLAmgIR0CP872vjfeldX2UKGgGR7/CiwjdHlOoaAdLAmgIR0CP9DMJQcghdX2UKGgGR7/IHSF49ovjaAdLA2gIR0CP81RceKbbdX2UKGgGR7+3fXPJJXhgaAdLAmgIR0CP88vzvqkedX2UKGgGR7/ZGX5WRzRyaAdLBGgIR0CP8uv/R3NcdX2UKGgGR7/MBkqc3EQ5aAdLA2gIR0CP9EjX4CZGdX2UKGgGR7/VDsMRYigTaAdLA2gIR0CP82pGWldkdX2UKGgGR7/AJSBK+SKWaAdLAmgIR0CP8voA4n4PdX2UKGgGR7/SD3M6ij+KaAdLBGgIR0CP8+t8uzyCdX2UKGgGR7+/B7/n4fwJaAdLAmgIR0CP83vZRKpUdX2UKGgGR7/MCjk+5e7daAdLA2gIR0CP9GHkcS5BdX2UKGgGR7/JsC1Z1V5saAdLA2gIR0CP8xL5AQg+dX2UKGgGR7+3jKgZjx0/aAdLAmgIR0CP84pn6EamdX2UKGgGR7+9KwpvxYq5aAdLAmgIR0CP9HA57w8XdX2UKGgGR7/JenhsImgKaAdLA2gIR0CP9AH1vl2edX2UKGgGR7+m+49X9zfaaAdLAWgIR0CP9Hor4FibdX2UKGgGR7/RnVG0/nnuaAdLBGgIR0CP8zHBDXvqdX2UKGgGR7+8UCaJAMUiaAdLAmgIR0CP9IgFHJ9zdX2UKGgGR7/JZ1V5rxiHaAdLA2gIR0CP9BnB+F10dX2UKGgGR7/ZjfNzKcNIaAdLBGgIR0CP86oXKr7wdX2UKGgGR7/CNwR5C4SZaAdLAmgIR0CP80CcPOIJdX2UKGgGR7+4+r2g3974aAdLAmgIR0CP9JbrTpgUdX2UKGgGR7/KBxxT850baAdLA2gIR0CP9DJLdvbXdX2UKGgGR7/Wx3FDOTq0aAdLBGgIR0CP88i0OVgQdX2UKGgGR7/LvrnkkrwwaAdLA2gIR0CP81iDujREdX2UKGgGR7/HWK/EfkmyaAdLA2gIR0CP9K7btZ3cdX2UKGgGR7+9f2K2rn1WaAdLAmgIR0CP9ECJ40MxdX2UKGgGR7/RNZ/0/W1/aAdLA2gIR0CP894dIXj3dX2UKGgGR7/MiVSn+AEuaAdLA2gIR0CP82384xUOdX2UKGgGR7/IchkiD/VBaAdLA2gIR0CP9Md9Ujs2dX2UKGgGR7/VWu5jH4oJaAdLA2gIR0CP9FjxTbWVdX2UKGgGR7++zmfXf642aAdLAmgIR0CP8+72+PBBdX2UKGgGR7/BKGtZFG5MaAdLAmgIR0CP837hvR7adX2UKGgGR7/O51eSjgyeaAdLA2gIR0CP9Nvddmg8dX2UKGgGR7+cA3kxREWqaAdLAWgIR0CP9OOAAhjfdX2UKGgGR7/XV7x/d69kaAdLBGgIR0CP9HVn27FsdX2UKGgGR7/R1eSjgydnaAdLA2gIR0CP9AWDYh+wdX2UKGgGR7/Uu9eyAxzraAdLBGgIR0CP858CPp6hdX2UKGgGR7+8yYXwb2lEaAdLAmgIR0CP86yKvV3EdX2UKGgGR7/WNayKNyYHaAdLBGgIR0CP9JS619fDdX2UKGgGR7/bDbah6By0aAdLBGgIR0CP9CU+s5n2dX2UKGgGR7/ZDst03fhuaAdLBWgIR0CP9Qus90RwdX2UKGgGR7+2taIN3GGVaAdLAmgIR0CP87xn3+MqdX2UKGgGR7+cslLOAy2yaAdLAWgIR0CP9RVuJk5IdX2UKGgGR7+/ppvgm7aqaAdLAmgIR0CP9Kb0e2d/dX2UKGgGR7+kzGgi/wiJaAdLAWgIR0CP9Rvn8sMBdX2UKGgGR7/Kh4+r2g3+aAdLA2gIR0CP9D0g8r7PdX2UKGgGR7/CyAxzq8lHaAdLAmgIR0CP880IC2c8dX2UKGgGR7+pgqmTC+DfaAdLAWgIR0CP9ESXdCVsdX2UKGgGR7/Ns+mm+CbuaAdLA2gIR0CP9TEroW56dX2UKGgGR7/enFYMfA9FaAdLBGgIR0CP9MLDye7MdX2UKGgGR7/TMX7+DOC5aAdLA2gIR0CP8+JLM9r5dX2UKGgGR7+nlhgE2YOUaAdLAWgIR0CP9TthuwX7dX2UKGgGR7/Ts2eg+QlsaAdLA2gIR0CP9Fx+8XendX2UKGgGR7/CsDGLk0aZaAdLAmgIR0CP9NMibDuSdX2UKGgGR7+5poK2KEWZaAdLAmgIR0CP9UjHGS6ldX2UKGgGR7/QZ6lchTwVaAdLA2gIR0CP8/n5BTn8dX2UKGgGR7++g2606YE4aAdLAmgIR0CP9Vc9nscAdX2UKGgGR7/SWEbo8p1BaAdLA2gIR0CP9OjynUDudX2UKGgGR7/WoA4n4O+aaAdLBGgIR0CP9HlpXZGsdX2UKGgGR7+3JiiItUXIaAdLAmgIR0CP9Ak2P1cudX2UKGgGR7/CgjhUBGQTaAdLAmgIR0CP9Bl5nlGPdX2UKGgGR7/G6BAfMfRvaAdLA2gIR0CP9JJd0JWvdX2UKGgGR7/X1EVnEl3RaAdLBGgIR0CP9Xi5NGmUdX2UKGgGR7/Y8wYcebNKaAdLBGgIR0CP9QphF3INdX2UKGgGR7+9MSK3uuzQaAdLAmgIR0CP9YkSElE7dX2UKGgGR7/KbIcR15jZaAdLA2gIR0CP9KpRXOnmdX2UKGgGR7/OI+GGmDUWaAdLA2gIR0CP9SF8ohIOdX2UKGgGR7/WSNfgJkXlaAdLBWgIR0CP9EEg4ffXdX2UKGgGR7/ANvOyE+PjaAdLAmgIR0CP9LiYLLIQdX2UKGgGR7/RRvWH1vl2aAdLA2gIR0CP9Z5t3wCsdX2UKGgGR7+05q/M4cWCaAdLAmgIR0CP9TBVuJk5dX2UKGgGR7/SAvcrRSgoaAdLA2gIR0CP9FayKNyYdX2UKGgGR7/LBSk0rK/3aAdLA2gIR0CP9NCVrylOdX2UKGgGR7/RzpHI6r/9aAdLA2gIR0CP9bZ39rGjdX2UKGgGR7/KKgqVhTfjaAdLA2gIR0CP9UgoPTXrdX2UKGgGR7+1GiHqNZNgaAdLAmgIR0CP9N8k2P1ddX2UKGgGR7+1IYm9g4OuaAdLAmgIR0CP9cUt7KJVdX2UKGgGR7+12vB7/n4gaAdLAmgIR0CP9VbHIZIhdX2UKGgGR7/K9A5aNdZ8aAdLA2gIR0CP9Pb/wRXfdX2UKGgGR7/RAo5PuXu3aAdLA2gIR0CP9dyGSIP9dX2UKGgGR7/ZEuxrzoU0aAdLBGgIR0CP9XTYukDZdX2UKGgGR7/Wk1Muez2OaAdLA2gIR0CP9QztTkyUdX2UKGgGR7/JoGpuMuOCaAdLA2gIR0CP9fL7oB7vdX2UKGgGR7+6UNayKNyYaAdLAmgIR0CP9R3KSxJNdX2UKGgGR7/xg3DNyHVPaAdLC2gIR0CP9K2eg+QmdX2UKGgGR7/dAlOXVsk6aAdLBWgIR0CP9ZwNLDhtdX2UKGgGR7/WrsSkCV8kaAdLBGgIR0CP9hIhhYvGdX2UKGgGR7/S63iJfpljaAdLA2gIR0CP9TP/rB0qdX2UKGgGR7/KvRJEpiI+aAdLA2gIR0CP9MQdS2pidWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3lhb2h1YS9taW5pY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUveWFvaHVhL21pbmljb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6473f9d7959d0b2522456496eb0d4419ece0a9ff17844dcb6f538fb9e9c732fb
|
3 |
+
size 45039
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eab7ec1058561a00afd2904462ac3804156f0469961ad3c81dbcda47d968afb
|
3 |
+
size 46319
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.2.0-21-generic-x86_64-with-glibc2.37 # 21-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 14 12:34:02 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0.dev20230830
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc15a50b640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc15a6fe440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693651180189122914, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0OD3vrJc3z5bVqM+Oj5Lv4qVrD+uwpi/WX/7vs8o5L7cEaY+LAwIvkrd4T714Ng+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoXzFvmd6tD+MD8w/az2zvgBsyT+wen6/KT0TvVi1xr//3nk/ERjoPsHF0T+on6w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQ4Pe+slzfPltWoz71F0C/N+3YP9dRXD86Pku/ipWsP67CmL/DYFu/cqmIPzWBcb9Zf/u+zyjkvtwRpj7nPU+/gmzYv6uMXz8sDAi+St3hPvXg2D74BD8+XvrePzp1ij+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.48413706 0.43625408 0.31901821]\n [-0.79391825 1.3483136 -1.1934412 ]\n [-0.49120596 -0.44562384 0.324355 ]\n [-0.13285893 0.44114143 0.4235913 ]]", "desired_goal": "[[-0.38571647 1.4099854 1.5942245 ]\n [-0.35007796 1.5736084 -0.99405956]\n [-0.035947 -1.5524092 0.9760589 ]\n [ 0.4533086 1.6388475 0.33715558]]", "observation": "[[-0.48413706 0.43625408 0.31901821 -0.75036556 1.6947392 0.8606238 ]\n [-0.79391825 1.3483136 -1.1934412 -0.8569452 1.0676711 -0.9433778 ]\n [-0.49120596 -0.44562384 0.324355 -0.8095383 -1.6908114 0.8732402 ]\n [-0.13285893 0.44114143 0.4235913 0.18654239 1.7420156 1.0817025 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKqz5vZ/XCb6YjAE+9rZqPAt1WDwveYU+tgggPb+M6r2hS489yk2bO7zDgj2uuSs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12191041 -0.13461159 0.12651289]\n [ 0.01432585 0.0132115 0.26069018]\n [ 0.03907081 -0.11452626 0.06996847]\n [ 0.0047395 0.0638499 0.1677005 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv5yCWeHzpX+MAWyUSwGMAXSUR0CP8/rj5sTGdX2UKGgGR7/iDLbHp8neaAdLBmgIR0CP8qvKU3XJdX2UKGgGR7/L0yP+4smOaAdLA2gIR0CP85YbsF+vdX2UKGgGR7/N4QBgeA/caAdLA2gIR0CP8yZDzAerdX2UKGgGR7/E1og3cYZVaAdLA2gIR0CP9BM6ij+KdX2UKGgGR7/M9FnZkCmuaAdLA2gIR0CP8sSvC/GmdX2UKGgGR7/N0tAcDKYBaAdLA2gIR0CP86ysS00FdX2UKGgGR7/Kt/4IrvsraAdLA2gIR0CP8z0T101ZdX2UKGgGR7+iHVPN3W4FaAdLAWgIR0CP8szw+dK/dX2UKGgGR7/EIrvsqrimaAdLAmgIR0CP9CM/hVENdX2UKGgGR7+5Cw8nuy/saAdLAmgIR0CP872vjfeldX2UKGgGR7/CiwjdHlOoaAdLAmgIR0CP9DMJQcghdX2UKGgGR7/IHSF49ovjaAdLA2gIR0CP81RceKbbdX2UKGgGR7+3fXPJJXhgaAdLAmgIR0CP88vzvqkedX2UKGgGR7/ZGX5WRzRyaAdLBGgIR0CP8uv/R3NcdX2UKGgGR7/MBkqc3EQ5aAdLA2gIR0CP9EjX4CZGdX2UKGgGR7/VDsMRYigTaAdLA2gIR0CP82pGWldkdX2UKGgGR7/AJSBK+SKWaAdLAmgIR0CP8voA4n4PdX2UKGgGR7/SD3M6ij+KaAdLBGgIR0CP8+t8uzyCdX2UKGgGR7+/B7/n4fwJaAdLAmgIR0CP83vZRKpUdX2UKGgGR7/MCjk+5e7daAdLA2gIR0CP9GHkcS5BdX2UKGgGR7/JsC1Z1V5saAdLA2gIR0CP8xL5AQg+dX2UKGgGR7+3jKgZjx0/aAdLAmgIR0CP84pn6EamdX2UKGgGR7+9KwpvxYq5aAdLAmgIR0CP9HA57w8XdX2UKGgGR7/JenhsImgKaAdLA2gIR0CP9AH1vl2edX2UKGgGR7+m+49X9zfaaAdLAWgIR0CP9Hor4FibdX2UKGgGR7/RnVG0/nnuaAdLBGgIR0CP8zHBDXvqdX2UKGgGR7+8UCaJAMUiaAdLAmgIR0CP9IgFHJ9zdX2UKGgGR7/JZ1V5rxiHaAdLA2gIR0CP9BnB+F10dX2UKGgGR7/ZjfNzKcNIaAdLBGgIR0CP86oXKr7wdX2UKGgGR7/CNwR5C4SZaAdLAmgIR0CP80CcPOIJdX2UKGgGR7+4+r2g3974aAdLAmgIR0CP9JbrTpgUdX2UKGgGR7/KBxxT850baAdLA2gIR0CP9DJLdvbXdX2UKGgGR7/Wx3FDOTq0aAdLBGgIR0CP88i0OVgQdX2UKGgGR7/LvrnkkrwwaAdLA2gIR0CP81iDujREdX2UKGgGR7/HWK/EfkmyaAdLA2gIR0CP9K7btZ3cdX2UKGgGR7+9f2K2rn1WaAdLAmgIR0CP9ECJ40MxdX2UKGgGR7/RNZ/0/W1/aAdLA2gIR0CP894dIXj3dX2UKGgGR7/MiVSn+AEuaAdLA2gIR0CP82384xUOdX2UKGgGR7/IchkiD/VBaAdLA2gIR0CP9Md9Ujs2dX2UKGgGR7/VWu5jH4oJaAdLA2gIR0CP9FjxTbWVdX2UKGgGR7++zmfXf642aAdLAmgIR0CP8+72+PBBdX2UKGgGR7/BKGtZFG5MaAdLAmgIR0CP837hvR7adX2UKGgGR7/O51eSjgyeaAdLA2gIR0CP9Nvddmg8dX2UKGgGR7+cA3kxREWqaAdLAWgIR0CP9OOAAhjfdX2UKGgGR7/XV7x/d69kaAdLBGgIR0CP9HVn27FsdX2UKGgGR7/R1eSjgydnaAdLA2gIR0CP9AWDYh+wdX2UKGgGR7/Uu9eyAxzraAdLBGgIR0CP858CPp6hdX2UKGgGR7+8yYXwb2lEaAdLAmgIR0CP86yKvV3EdX2UKGgGR7/WNayKNyYHaAdLBGgIR0CP9JS619fDdX2UKGgGR7/bDbah6By0aAdLBGgIR0CP9CU+s5n2dX2UKGgGR7/ZDst03fhuaAdLBWgIR0CP9Qus90RwdX2UKGgGR7+2taIN3GGVaAdLAmgIR0CP87xn3+MqdX2UKGgGR7+cslLOAy2yaAdLAWgIR0CP9RVuJk5IdX2UKGgGR7+/ppvgm7aqaAdLAmgIR0CP9Kb0e2d/dX2UKGgGR7+kzGgi/wiJaAdLAWgIR0CP9Rvn8sMBdX2UKGgGR7/Kh4+r2g3+aAdLA2gIR0CP9D0g8r7PdX2UKGgGR7/CyAxzq8lHaAdLAmgIR0CP880IC2c8dX2UKGgGR7+pgqmTC+DfaAdLAWgIR0CP9ESXdCVsdX2UKGgGR7/Ns+mm+CbuaAdLA2gIR0CP9TEroW56dX2UKGgGR7/enFYMfA9FaAdLBGgIR0CP9MLDye7MdX2UKGgGR7/TMX7+DOC5aAdLA2gIR0CP8+JLM9r5dX2UKGgGR7+nlhgE2YOUaAdLAWgIR0CP9TthuwX7dX2UKGgGR7/Ts2eg+QlsaAdLA2gIR0CP9Fx+8XendX2UKGgGR7/CsDGLk0aZaAdLAmgIR0CP9NMibDuSdX2UKGgGR7+5poK2KEWZaAdLAmgIR0CP9UjHGS6ldX2UKGgGR7/QZ6lchTwVaAdLA2gIR0CP8/n5BTn8dX2UKGgGR7++g2606YE4aAdLAmgIR0CP9Vc9nscAdX2UKGgGR7/SWEbo8p1BaAdLA2gIR0CP9OjynUDudX2UKGgGR7/WoA4n4O+aaAdLBGgIR0CP9HlpXZGsdX2UKGgGR7+3JiiItUXIaAdLAmgIR0CP9Ak2P1cudX2UKGgGR7/CgjhUBGQTaAdLAmgIR0CP9Bl5nlGPdX2UKGgGR7/G6BAfMfRvaAdLA2gIR0CP9JJd0JWvdX2UKGgGR7/X1EVnEl3RaAdLBGgIR0CP9Xi5NGmUdX2UKGgGR7/Y8wYcebNKaAdLBGgIR0CP9QphF3INdX2UKGgGR7+9MSK3uuzQaAdLAmgIR0CP9YkSElE7dX2UKGgGR7/KbIcR15jZaAdLA2gIR0CP9KpRXOnmdX2UKGgGR7/OI+GGmDUWaAdLA2gIR0CP9SF8ohIOdX2UKGgGR7/WSNfgJkXlaAdLBWgIR0CP9EEg4ffXdX2UKGgGR7/ANvOyE+PjaAdLAmgIR0CP9LiYLLIQdX2UKGgGR7/RRvWH1vl2aAdLA2gIR0CP9Z5t3wCsdX2UKGgGR7+05q/M4cWCaAdLAmgIR0CP9TBVuJk5dX2UKGgGR7/SAvcrRSgoaAdLA2gIR0CP9FayKNyYdX2UKGgGR7/LBSk0rK/3aAdLA2gIR0CP9NCVrylOdX2UKGgGR7/RzpHI6r/9aAdLA2gIR0CP9bZ39rGjdX2UKGgGR7/KKgqVhTfjaAdLA2gIR0CP9UgoPTXrdX2UKGgGR7+1GiHqNZNgaAdLAmgIR0CP9N8k2P1ddX2UKGgGR7+1IYm9g4OuaAdLAmgIR0CP9cUt7KJVdX2UKGgGR7+12vB7/n4gaAdLAmgIR0CP9VbHIZIhdX2UKGgGR7/K9A5aNdZ8aAdLA2gIR0CP9Pb/wRXfdX2UKGgGR7/RAo5PuXu3aAdLA2gIR0CP9dyGSIP9dX2UKGgGR7/ZEuxrzoU0aAdLBGgIR0CP9XTYukDZdX2UKGgGR7/Wk1Muez2OaAdLA2gIR0CP9QztTkyUdX2UKGgGR7/JoGpuMuOCaAdLA2gIR0CP9fL7oB7vdX2UKGgGR7+6UNayKNyYaAdLAmgIR0CP9R3KSxJNdX2UKGgGR7/xg3DNyHVPaAdLC2gIR0CP9K2eg+QmdX2UKGgGR7/dAlOXVsk6aAdLBWgIR0CP9ZwNLDhtdX2UKGgGR7/WrsSkCV8kaAdLBGgIR0CP9hIhhYvGdX2UKGgGR7/S63iJfpljaAdLA2gIR0CP9TP/rB0qdX2UKGgGR7/KvRJEpiI+aAdLA2gIR0CP9MQdS2pidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3lhb2h1YS9taW5pY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUveWFvaHVhL21pbmljb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.2.0-21-generic-x86_64-with-glibc2.37 # 21-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 14 12:34:02 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0.dev20230830", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (701 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.18876668084412812, "std_reward": 0.07850888070733798, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-09-02T19:07:13.465450"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cd66282fc094aabccef622fd0018b975995a440ea6fda281fb77c0a18f06447
|
3 |
+
size 2553
|