yangwang825
commited on
Commit
·
47c2e51
1
Parent(s):
9debce6
Create feature_extraction_xvector.py
Browse files- feature_extraction_xvector.py +129 -0
feature_extraction_xvector.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
4 |
+
from transformers.feature_extraction_utils import BatchFeature
|
5 |
+
from transformers.utils import PaddingStrategy, TensorType, logging
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class XvectorFeatureExtractor(SequenceFeatureExtractor):
|
11 |
+
|
12 |
+
model_input_names = ["input_values", "attention_mask"]
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
feature_size=1,
|
17 |
+
sampling_rate=16000,
|
18 |
+
padding_value=0.0,
|
19 |
+
return_attention_mask=False,
|
20 |
+
do_normalize=True,
|
21 |
+
**kwargs,
|
22 |
+
):
|
23 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
24 |
+
self.return_attention_mask = return_attention_mask
|
25 |
+
self.do_normalize = do_normalize
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def zero_mean_unit_var_norm(
|
29 |
+
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
|
30 |
+
) -> List[np.ndarray]:
|
31 |
+
"""
|
32 |
+
Every array in the list is normalized to have zero mean and unit variance
|
33 |
+
"""
|
34 |
+
if attention_mask is not None:
|
35 |
+
attention_mask = np.array(attention_mask, np.int32)
|
36 |
+
normed_input_values = []
|
37 |
+
|
38 |
+
for vector, length in zip(input_values, attention_mask.sum(-1)):
|
39 |
+
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
|
40 |
+
if length < normed_slice.shape[0]:
|
41 |
+
normed_slice[length:] = padding_value
|
42 |
+
|
43 |
+
normed_input_values.append(normed_slice)
|
44 |
+
else:
|
45 |
+
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
|
46 |
+
|
47 |
+
return normed_input_values
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
52 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
53 |
+
max_length: Optional[int] = None,
|
54 |
+
truncation: bool = False,
|
55 |
+
pad_to_multiple_of: Optional[int] = None,
|
56 |
+
return_attention_mask: Optional[bool] = None,
|
57 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
58 |
+
sampling_rate: Optional[int] = None,
|
59 |
+
**kwargs,
|
60 |
+
) -> BatchFeature:
|
61 |
+
if sampling_rate is not None:
|
62 |
+
if sampling_rate != self.sampling_rate:
|
63 |
+
raise ValueError(
|
64 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
65 |
+
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
|
66 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
67 |
+
)
|
68 |
+
else:
|
69 |
+
logger.warning(
|
70 |
+
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
|
71 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
72 |
+
)
|
73 |
+
|
74 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
75 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
76 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
77 |
+
is_batched = is_batched_numpy or (
|
78 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
79 |
+
)
|
80 |
+
|
81 |
+
# always return batch
|
82 |
+
if not is_batched:
|
83 |
+
raw_speech = [raw_speech]
|
84 |
+
|
85 |
+
# convert into correct format for padding
|
86 |
+
encoded_inputs = BatchFeature({"input_values": raw_speech})
|
87 |
+
|
88 |
+
padded_inputs = self.pad(
|
89 |
+
encoded_inputs,
|
90 |
+
padding=padding,
|
91 |
+
max_length=max_length,
|
92 |
+
truncation=truncation,
|
93 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
94 |
+
return_attention_mask=return_attention_mask,
|
95 |
+
)
|
96 |
+
|
97 |
+
# convert input values to correct format
|
98 |
+
input_values = padded_inputs["input_values"]
|
99 |
+
if not isinstance(input_values[0], np.ndarray):
|
100 |
+
padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values]
|
101 |
+
elif (
|
102 |
+
not isinstance(input_values, np.ndarray)
|
103 |
+
and isinstance(input_values[0], np.ndarray)
|
104 |
+
and input_values[0].dtype is np.dtype(np.float64)
|
105 |
+
):
|
106 |
+
padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values]
|
107 |
+
elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64):
|
108 |
+
padded_inputs["input_values"] = input_values.astype(np.float32)
|
109 |
+
|
110 |
+
# convert attention_mask to correct format
|
111 |
+
attention_mask = padded_inputs.get("attention_mask")
|
112 |
+
if attention_mask is not None:
|
113 |
+
padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
|
114 |
+
|
115 |
+
# zero-mean and unit-variance normalization
|
116 |
+
if self.do_normalize:
|
117 |
+
attention_mask = (
|
118 |
+
attention_mask
|
119 |
+
if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
|
120 |
+
else None
|
121 |
+
)
|
122 |
+
padded_inputs["input_values"] = self.zero_mean_unit_var_norm(
|
123 |
+
padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value
|
124 |
+
)
|
125 |
+
|
126 |
+
if return_tensors is not None:
|
127 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
128 |
+
|
129 |
+
return padded_inputs
|