File size: 18,781 Bytes
7f040e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import math
import torch
import typing as tp
import torch.nn as nn
import torch.nn.functional as F
from transformers.utils import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
from .helpers_xvector import Fbank
from .configuration_xvector import XvectorConfig
class InputNormalization(nn.Module):
spk_dict_mean: tp.Dict[int, torch.Tensor]
spk_dict_std: tp.Dict[int, torch.Tensor]
spk_dict_count: tp.Dict[int, int]
def __init__(
self,
mean_norm=True,
std_norm=True,
norm_type="global",
avg_factor=None,
requires_grad=False,
update_until_epoch=3,
):
super().__init__()
self.mean_norm = mean_norm
self.std_norm = std_norm
self.norm_type = norm_type
self.avg_factor = avg_factor
self.requires_grad = requires_grad
self.glob_mean = torch.tensor([0])
self.glob_std = torch.tensor([0])
self.spk_dict_mean = {}
self.spk_dict_std = {}
self.spk_dict_count = {}
self.weight = 1.0
self.count = 0
self.eps = 1e-10
self.update_until_epoch = update_until_epoch
def forward(self, input_values, lengths=None, spk_ids=torch.tensor([]), epoch=0):
"""Returns the tensor with the surrounding context.
Arguments
---------
x : tensor
A batch of tensors.
lengths : tensor
A batch of tensors containing the relative length of each
sentence (e.g, [0.7, 0.9, 1.0]). It is used to avoid
computing stats on zero-padded steps.
spk_ids : tensor containing the ids of each speaker (e.g, [0 10 6]).
It is used to perform per-speaker normalization when
norm_type='speaker'.
"""
x = input_values
N_batches = x.shape[0]
current_means = []
current_stds = []
for snt_id in range(N_batches):
# Avoiding padded time steps
# lengths = torch.sum(attention_mask, dim=1)
# relative_lengths = lengths / torch.max(lengths)
# actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
actual_size = torch.round(lengths[snt_id] * x.shape[1]).int()
# computing statistics
current_mean, current_std = self._compute_current_stats(
x[snt_id, 0:actual_size, ...]
)
current_means.append(current_mean)
current_stds.append(current_std)
if self.norm_type == "sentence":
x[snt_id] = (x[snt_id] - current_mean.data) / current_std.data
if self.norm_type == "speaker":
spk_id = int(spk_ids[snt_id][0])
if self.training:
if spk_id not in self.spk_dict_mean:
# Initialization of the dictionary
self.spk_dict_mean[spk_id] = current_mean
self.spk_dict_std[spk_id] = current_std
self.spk_dict_count[spk_id] = 1
else:
self.spk_dict_count[spk_id] = (
self.spk_dict_count[spk_id] + 1
)
if self.avg_factor is None:
self.weight = 1 / self.spk_dict_count[spk_id]
else:
self.weight = self.avg_factor
self.spk_dict_mean[spk_id] = (
(1 - self.weight) * self.spk_dict_mean[spk_id]
+ self.weight * current_mean
)
self.spk_dict_std[spk_id] = (
(1 - self.weight) * self.spk_dict_std[spk_id]
+ self.weight * current_std
)
self.spk_dict_mean[spk_id].detach()
self.spk_dict_std[spk_id].detach()
speaker_mean = self.spk_dict_mean[spk_id].data
speaker_std = self.spk_dict_std[spk_id].data
else:
if spk_id in self.spk_dict_mean:
speaker_mean = self.spk_dict_mean[spk_id].data
speaker_std = self.spk_dict_std[spk_id].data
else:
speaker_mean = current_mean.data
speaker_std = current_std.data
x[snt_id] = (x[snt_id] - speaker_mean) / speaker_std
if self.norm_type == "batch" or self.norm_type == "global":
current_mean = torch.mean(torch.stack(current_means), dim=0)
current_std = torch.mean(torch.stack(current_stds), dim=0)
if self.norm_type == "batch":
x = (x - current_mean.data) / (current_std.data)
if self.norm_type == "global":
if self.training:
if self.count == 0:
self.glob_mean = current_mean
self.glob_std = current_std
elif epoch < self.update_until_epoch:
if self.avg_factor is None:
self.weight = 1 / (self.count + 1)
else:
self.weight = self.avg_factor
self.glob_mean = (
1 - self.weight
) * self.glob_mean + self.weight * current_mean
self.glob_std = (
1 - self.weight
) * self.glob_std + self.weight * current_std
self.glob_mean.detach()
self.glob_std.detach()
self.count = self.count + 1
x = (x - self.glob_mean.data) / (self.glob_std.data)
return x
def _compute_current_stats(self, x):
"""Returns the tensor with the surrounding context.
Arguments
---------
x : tensor
A batch of tensors.
"""
# Compute current mean
if self.mean_norm:
current_mean = torch.mean(x, dim=0).detach().data
else:
current_mean = torch.tensor([0.0], device=x.device)
# Compute current std
if self.std_norm:
current_std = torch.std(x, dim=0).detach().data
else:
current_std = torch.tensor([1.0], device=x.device)
# Improving numerical stability of std
current_std = torch.max(
current_std, self.eps * torch.ones_like(current_std)
)
return current_mean, current_std
def _statistics_dict(self):
"""Fills the dictionary containing the normalization statistics."""
state = {}
state["count"] = self.count
state["glob_mean"] = self.glob_mean
state["glob_std"] = self.glob_std
state["spk_dict_mean"] = self.spk_dict_mean
state["spk_dict_std"] = self.spk_dict_std
state["spk_dict_count"] = self.spk_dict_count
return state
def _load_statistics_dict(self, state):
"""Loads the dictionary containing the statistics.
Arguments
---------
state : dict
A dictionary containing the normalization statistics.
"""
self.count = state["count"]
if isinstance(state["glob_mean"], int):
self.glob_mean = state["glob_mean"]
self.glob_std = state["glob_std"]
else:
self.glob_mean = state["glob_mean"] # .to(self.device_inp)
self.glob_std = state["glob_std"] # .to(self.device_inp)
# Loading the spk_dict_mean in the right device
self.spk_dict_mean = {}
for spk in state["spk_dict_mean"]:
self.spk_dict_mean[spk] = state["spk_dict_mean"][spk].to(
self.device_inp
)
# Loading the spk_dict_std in the right device
self.spk_dict_std = {}
for spk in state["spk_dict_std"]:
self.spk_dict_std[spk] = state["spk_dict_std"][spk].to(
self.device_inp
)
self.spk_dict_count = state["spk_dict_count"]
return state
def to(self, device):
"""Puts the needed tensors in the right device."""
self = super(InputNormalization, self).to(device)
self.glob_mean = self.glob_mean.to(device)
self.glob_std = self.glob_std.to(device)
for spk in self.spk_dict_mean:
self.spk_dict_mean[spk] = self.spk_dict_mean[spk].to(device)
self.spk_dict_std[spk] = self.spk_dict_std[spk].to(device)
return self
class TdnnLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
dilation=1,
stride=1,
padding=0,
padding_mode="reflect",
activation=torch.nn.LeakyReLU,
):
super(TdnnLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.dilation = dilation
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
self.activation = activation
self.conv = nn.Conv1d(
self.in_channels,
self.out_channels,
self.kernel_size,
dilation=self.dilation,
padding=self.padding
)
# Set Affine=false to be compatible with the original kaldi version
# self.ln = nn.LayerNorm(out_channels, elementwise_affine=False)
self.norm = nn.BatchNorm1d(out_channels, affine=False)
def forward(self, x):
x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
out = self.conv(x)
out = self.activation()(out)
out = self.norm(out)
return out
def _manage_padding(
self, x, kernel_size: int, dilation: int, stride: int,
):
# Detecting input shape
L_in = self.in_channels
# Time padding
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
# Applying padding
x = F.pad(x, padding, mode=self.padding_mode)
return x
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
"""This function computes the number of elements to add for zero-padding.
Arguments
---------
L_in : int
stride: int
kernel_size : int
dilation : int
"""
if stride > 1:
padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
else:
L_out = (
math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
)
padding = [
math.floor((L_in - L_out) / 2),
math.floor((L_in - L_out) / 2),
]
return padding
class StatisticsPooling(nn.Module):
def __init__(self, return_mean=True, return_std=True):
super().__init__()
# Small value for GaussNoise
self.eps = 1e-5
self.return_mean = return_mean
self.return_std = return_std
if not (self.return_mean or self.return_std):
raise ValueError(
"both of statistics are equal to False \n"
"consider enabling mean and/or std statistic pooling"
)
def forward(self, input_values, lengths=None):
"""Calculates mean and std for a batch (input tensor).
Arguments
---------
x : torch.Tensor
It represents a tensor for a mini-batch.
"""
x = input_values
if lengths is None:
if self.return_mean:
mean = x.mean(dim=1)
if self.return_std:
std = x.std(dim=1)
else:
mean = []
std = []
for snt_id in range(x.shape[0]):
# Avoiding padded time steps
# lengths = torch.sum(attention_mask, dim=1)
# relative_lengths = lengths / torch.max(lengths)
# actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))
# computing statistics
if self.return_mean:
mean.append(
torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
)
if self.return_std:
std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
if self.return_mean:
mean = torch.stack(mean)
if self.return_std:
std = torch.stack(std)
if self.return_mean:
gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
gnoise = gnoise
mean += gnoise
if self.return_std:
std = std + self.eps
# Append mean and std of the batch
if self.return_mean and self.return_std:
pooled_stats = torch.cat((mean, std), dim=1)
pooled_stats = pooled_stats.unsqueeze(1)
elif self.return_mean:
pooled_stats = mean.unsqueeze(1)
elif self.return_std:
pooled_stats = std.unsqueeze(1)
return pooled_stats
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
"""Returns a tensor of epsilon Gaussian noise.
Arguments
---------
shape_of_tensor : tensor
It represents the size of tensor for generating Gaussian noise.
"""
gnoise = torch.randn(shape_of_tensor, device=device)
gnoise -= torch.min(gnoise)
gnoise /= torch.max(gnoise)
gnoise = self.eps * ((1 - 9) * gnoise + 9)
return gnoise
class XvectorEmbedder(nn.Module):
def __init__(
self,
in_channels=40,
activation=torch.nn.LeakyReLU,
tdnn_blocks=5,
tdnn_channels=[512, 512, 512, 512, 1500],
tdnn_kernel_sizes=[5, 3, 3, 1, 1],
tdnn_dilations=[1, 2, 3, 1, 1],
hidden_size=512,
) -> None:
super(XvectorEmbedder, self).__init__()
self.activation = activation
self.blocks = nn.ModuleList()
for block_index in range(tdnn_blocks):
out_channels = tdnn_channels[block_index]
tdnn = TdnnLayer(
in_channels,
out_channels,
kernel_size=tdnn_kernel_sizes[block_index],
dilation=tdnn_dilations[block_index],
activation=activation,
)
self.blocks.append(tdnn)
in_channels = tdnn_channels[block_index]
self.pooler = StatisticsPooling()
self.fc = nn.Linear(2 * out_channels, hidden_size)
def forward(self, input_values, lengths=None):
x = input_values
x = x.permute(0, 2, 1) # (B, T, F) -> (B, F, T)
for block in self.blocks:
x = block(x)
last_hidden_state = x.permute(0, 2, 1) # (B, F, T) -> (B, T, F)
pooler_output = self.pooler(last_hidden_state, lengths)
pooler_output = self.fc(pooler_output.squeeze(1))
return ModelOutput(
last_hidden_state=last_hidden_state,
pooler_output=pooler_output
)
class CosineSimilarityHead(torch.nn.Module):
"""
This class implements the cosine similarity on the top of features.
"""
def __init__(
self,
in_channels,
lin_blocks=0,
hidden_size=192,
num_classes=1211,
):
super().__init__()
self.blocks = nn.ModuleList()
for block_index in range(lin_blocks):
self.blocks.extend(
[
nn.BatchNorm1d(num_features=in_channels),
nn.Linear(in_features=in_channels, out_features=hidden_size),
]
)
in_channels = hidden_size
# Final Layer
self.weight = nn.Parameter(
torch.FloatTensor(num_classes, in_channels)
)
nn.init.xavier_uniform_(self.weight)
def forward(self, x):
"""Returns the output probabilities over speakers.
Arguments
---------
x : torch.Tensor
Torch tensor.
"""
for layer in self.blocks:
x = layer(x)
# Need to be normalized
x = F.linear(F.normalize(x), F.normalize(self.weight))
return x
class XvectorPreTrainedModel(PreTrainedModel):
config_class = XvectorConfig
base_model_prefix = "xvector"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight.data)
if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
module.bias.data.zero_()
class XvectorModel(XvectorPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.compute_features = Fbank(
n_mels=config.n_mels,
sample_rate=config.sample_rate,
win_length=config.win_length,
hop_length=config.hop_length,
)
self.mean_var_norm = InputNormalization(
mean_norm=config.mean_norm,
std_norm=config.std_norm,
norm_type=config.norm_type
)
self.embedding_model = XvectorEmbedder(
in_channels=config.n_mels,
activation=nn.LeakyReLU,
tdnn_blocks=config.tdnn_blocks,
tdnn_channels=config.tdnn_channels,
tdnn_kernel_sizes=config.tdnn_kernel_sizes,
tdnn_dilations=config.tdnn_dilations,
hidden_size=config.hidden_size,
)
def forward(self, input_values, lengths=None):
x = input_values
# if attention_mask is None:
# attention_mask = torch.ones_like(input_values, device=x.device)
x = self.compute_features(x)
x = self.mean_var_norm(x, lengths)
output = self.embedding_model(x, lengths)
return output |