File size: 18,781 Bytes
7f040e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import math
import torch
import typing as tp
import torch.nn as nn
import torch.nn.functional as F
from transformers.utils import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput

from .helpers_xvector import Fbank
from .configuration_xvector import XvectorConfig


class InputNormalization(nn.Module):

    spk_dict_mean: tp.Dict[int, torch.Tensor]
    spk_dict_std: tp.Dict[int, torch.Tensor]
    spk_dict_count: tp.Dict[int, int]

    def __init__(
        self,
        mean_norm=True,
        std_norm=True,
        norm_type="global",
        avg_factor=None,
        requires_grad=False,
        update_until_epoch=3,
    ):
        super().__init__()
        self.mean_norm = mean_norm
        self.std_norm = std_norm
        self.norm_type = norm_type
        self.avg_factor = avg_factor
        self.requires_grad = requires_grad
        self.glob_mean = torch.tensor([0])
        self.glob_std = torch.tensor([0])
        self.spk_dict_mean = {}
        self.spk_dict_std = {}
        self.spk_dict_count = {}
        self.weight = 1.0
        self.count = 0
        self.eps = 1e-10
        self.update_until_epoch = update_until_epoch

    def forward(self, input_values, lengths=None, spk_ids=torch.tensor([]), epoch=0):
        """Returns the tensor with the surrounding context.

        Arguments
        ---------
        x : tensor
            A batch of tensors.
        lengths : tensor
            A batch of tensors containing the relative length of each
            sentence (e.g, [0.7, 0.9, 1.0]). It is used to avoid
            computing stats on zero-padded steps.
        spk_ids : tensor containing the ids of each speaker (e.g, [0 10 6]).
            It is used to perform per-speaker normalization when
            norm_type='speaker'.
        """
        x = input_values
        N_batches = x.shape[0]

        current_means = []
        current_stds = []

        for snt_id in range(N_batches):
            # Avoiding padded time steps
            # lengths = torch.sum(attention_mask, dim=1)
            # relative_lengths = lengths / torch.max(lengths)
            # actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
            actual_size = torch.round(lengths[snt_id] * x.shape[1]).int()

            # computing statistics
            current_mean, current_std = self._compute_current_stats(
                x[snt_id, 0:actual_size, ...]
            )

            current_means.append(current_mean)
            current_stds.append(current_std)

            if self.norm_type == "sentence":
                x[snt_id] = (x[snt_id] - current_mean.data) / current_std.data

            if self.norm_type == "speaker":
                spk_id = int(spk_ids[snt_id][0])

                if self.training:
                    if spk_id not in self.spk_dict_mean:
                        # Initialization of the dictionary
                        self.spk_dict_mean[spk_id] = current_mean
                        self.spk_dict_std[spk_id] = current_std
                        self.spk_dict_count[spk_id] = 1

                    else:
                        self.spk_dict_count[spk_id] = (
                            self.spk_dict_count[spk_id] + 1
                        )

                        if self.avg_factor is None:
                            self.weight = 1 / self.spk_dict_count[spk_id]
                        else:
                            self.weight = self.avg_factor

                        self.spk_dict_mean[spk_id] = (
                            (1 - self.weight) * self.spk_dict_mean[spk_id]
                            + self.weight * current_mean
                        )
                        self.spk_dict_std[spk_id] = (
                            (1 - self.weight) * self.spk_dict_std[spk_id]
                            + self.weight * current_std
                        )

                        self.spk_dict_mean[spk_id].detach()
                        self.spk_dict_std[spk_id].detach()

                    speaker_mean = self.spk_dict_mean[spk_id].data
                    speaker_std = self.spk_dict_std[spk_id].data
                else:
                    if spk_id in self.spk_dict_mean:
                        speaker_mean = self.spk_dict_mean[spk_id].data
                        speaker_std = self.spk_dict_std[spk_id].data
                    else:
                        speaker_mean = current_mean.data
                        speaker_std = current_std.data

                x[snt_id] = (x[snt_id] - speaker_mean) / speaker_std

        if self.norm_type == "batch" or self.norm_type == "global":
            current_mean = torch.mean(torch.stack(current_means), dim=0)
            current_std = torch.mean(torch.stack(current_stds), dim=0)

            if self.norm_type == "batch":
                x = (x - current_mean.data) / (current_std.data)

            if self.norm_type == "global":
                if self.training:
                    if self.count == 0:
                        self.glob_mean = current_mean
                        self.glob_std = current_std

                    elif epoch < self.update_until_epoch:
                        if self.avg_factor is None:
                            self.weight = 1 / (self.count + 1)
                        else:
                            self.weight = self.avg_factor

                        self.glob_mean = (
                            1 - self.weight
                        ) * self.glob_mean + self.weight * current_mean

                        self.glob_std = (
                            1 - self.weight
                        ) * self.glob_std + self.weight * current_std

                    self.glob_mean.detach()
                    self.glob_std.detach()

                    self.count = self.count + 1

                x = (x - self.glob_mean.data) / (self.glob_std.data)

        return x

    def _compute_current_stats(self, x):
        """Returns the tensor with the surrounding context.

        Arguments
        ---------
        x : tensor
            A batch of tensors.
        """
        # Compute current mean
        if self.mean_norm:
            current_mean = torch.mean(x, dim=0).detach().data
        else:
            current_mean = torch.tensor([0.0], device=x.device)

        # Compute current std
        if self.std_norm:
            current_std = torch.std(x, dim=0).detach().data
        else:
            current_std = torch.tensor([1.0], device=x.device)

        # Improving numerical stability of std
        current_std = torch.max(
            current_std, self.eps * torch.ones_like(current_std)
        )

        return current_mean, current_std

    def _statistics_dict(self):
        """Fills the dictionary containing the normalization statistics."""
        state = {}
        state["count"] = self.count
        state["glob_mean"] = self.glob_mean
        state["glob_std"] = self.glob_std
        state["spk_dict_mean"] = self.spk_dict_mean
        state["spk_dict_std"] = self.spk_dict_std
        state["spk_dict_count"] = self.spk_dict_count

        return state

    def _load_statistics_dict(self, state):
        """Loads the dictionary containing the statistics.

        Arguments
        ---------
        state : dict
            A dictionary containing the normalization statistics.
        """
        self.count = state["count"]
        if isinstance(state["glob_mean"], int):
            self.glob_mean = state["glob_mean"]
            self.glob_std = state["glob_std"]
        else:
            self.glob_mean = state["glob_mean"]  # .to(self.device_inp)
            self.glob_std = state["glob_std"]  # .to(self.device_inp)

        # Loading the spk_dict_mean in the right device
        self.spk_dict_mean = {}
        for spk in state["spk_dict_mean"]:
            self.spk_dict_mean[spk] = state["spk_dict_mean"][spk].to(
                self.device_inp
            )

        # Loading the spk_dict_std in the right device
        self.spk_dict_std = {}
        for spk in state["spk_dict_std"]:
            self.spk_dict_std[spk] = state["spk_dict_std"][spk].to(
                self.device_inp
            )

        self.spk_dict_count = state["spk_dict_count"]

        return state

    def to(self, device):
        """Puts the needed tensors in the right device."""
        self = super(InputNormalization, self).to(device)
        self.glob_mean = self.glob_mean.to(device)
        self.glob_std = self.glob_std.to(device)
        for spk in self.spk_dict_mean:
            self.spk_dict_mean[spk] = self.spk_dict_mean[spk].to(device)
            self.spk_dict_std[spk] = self.spk_dict_std[spk].to(device)
        return self


class TdnnLayer(nn.Module):

    def __init__(
        self, 
        in_channels, 
        out_channels, 
        kernel_size, 
        dilation=1, 
        stride=1, 
        padding=0, 
        padding_mode="reflect", 
        activation=torch.nn.LeakyReLU, 
    ):
        super(TdnnLayer, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.dilation = dilation
        self.stride = stride
        self.padding = padding
        self.padding_mode = padding_mode
        self.activation = activation

        self.conv = nn.Conv1d(
            self.in_channels, 
            self.out_channels, 
            self.kernel_size, 
            dilation=self.dilation, 
            padding=self.padding
        )

        # Set Affine=false to be compatible with the original kaldi version
        # self.ln = nn.LayerNorm(out_channels, elementwise_affine=False)
        self.norm = nn.BatchNorm1d(out_channels, affine=False)

    def forward(self, x):
        x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
        out = self.conv(x)
        out = self.activation()(out) 
        out = self.norm(out)
        return out

    def _manage_padding(
        self, x, kernel_size: int, dilation: int, stride: int,
    ):
        # Detecting input shape
        L_in = self.in_channels

        # Time padding
        padding = get_padding_elem(L_in, stride, kernel_size, dilation)

        # Applying padding
        x = F.pad(x, padding, mode=self.padding_mode)

        return x


def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
    """This function computes the number of elements to add for zero-padding.

    Arguments
    ---------
    L_in : int
    stride: int
    kernel_size : int
    dilation : int
    """
    if stride > 1:
        padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]

    else:
        L_out = (
            math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
        )
        padding = [
            math.floor((L_in - L_out) / 2),
            math.floor((L_in - L_out) / 2),
        ]
    return padding


class StatisticsPooling(nn.Module):

    def __init__(self, return_mean=True, return_std=True):
        super().__init__()

        # Small value for GaussNoise
        self.eps = 1e-5
        self.return_mean = return_mean
        self.return_std = return_std
        if not (self.return_mean or self.return_std):
            raise ValueError(
                "both of statistics are equal to False \n"
                "consider enabling mean and/or std statistic pooling"
            )

    def forward(self, input_values, lengths=None):
        """Calculates mean and std for a batch (input tensor).

        Arguments
        ---------
        x : torch.Tensor
            It represents a tensor for a mini-batch.
        """
        x = input_values
        if lengths is None:
            if self.return_mean:
                mean = x.mean(dim=1)
            if self.return_std:
                std = x.std(dim=1)
        else:
            mean = []
            std = []
            for snt_id in range(x.shape[0]):
                # Avoiding padded time steps
                # lengths = torch.sum(attention_mask, dim=1)
                # relative_lengths = lengths / torch.max(lengths)
                # actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
                actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))

                # computing statistics
                if self.return_mean:
                    mean.append(
                        torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
                    )
                if self.return_std:
                    std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
            if self.return_mean:
                mean = torch.stack(mean)
            if self.return_std:
                std = torch.stack(std)

        if self.return_mean:
            gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
            gnoise = gnoise
            mean += gnoise
        if self.return_std:
            std = std + self.eps

        # Append mean and std of the batch
        if self.return_mean and self.return_std:
            pooled_stats = torch.cat((mean, std), dim=1)
            pooled_stats = pooled_stats.unsqueeze(1)
        elif self.return_mean:
            pooled_stats = mean.unsqueeze(1)
        elif self.return_std:
            pooled_stats = std.unsqueeze(1)

        return pooled_stats

    def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
        """Returns a tensor of epsilon Gaussian noise.

        Arguments
        ---------
        shape_of_tensor : tensor
            It represents the size of tensor for generating Gaussian noise.
        """
        gnoise = torch.randn(shape_of_tensor, device=device)
        gnoise -= torch.min(gnoise)
        gnoise /= torch.max(gnoise)
        gnoise = self.eps * ((1 - 9) * gnoise + 9)

        return gnoise


class XvectorEmbedder(nn.Module):

    def __init__(
        self, 
        in_channels=40, 
        activation=torch.nn.LeakyReLU, 
        tdnn_blocks=5, 
        tdnn_channels=[512, 512, 512, 512, 1500], 
        tdnn_kernel_sizes=[5, 3, 3, 1, 1], 
        tdnn_dilations=[1, 2, 3, 1, 1], 
        hidden_size=512, 
    ) -> None:
        super(XvectorEmbedder, self).__init__()
        self.activation = activation
        self.blocks = nn.ModuleList()
        for block_index in range(tdnn_blocks):
            out_channels = tdnn_channels[block_index]
            tdnn = TdnnLayer(
                in_channels, 
                out_channels, 
                kernel_size=tdnn_kernel_sizes[block_index],
                dilation=tdnn_dilations[block_index], 
                activation=activation, 
            )
            self.blocks.append(tdnn)
            in_channels = tdnn_channels[block_index]
        self.pooler = StatisticsPooling()
        self.fc = nn.Linear(2 * out_channels, hidden_size)

    def forward(self, input_values, lengths=None):
        x = input_values
        x = x.permute(0, 2, 1) # (B, T, F) -> (B, F, T)
        for block in self.blocks:
            x = block(x)
        last_hidden_state = x.permute(0, 2, 1) # (B, F, T) -> (B, T, F)
        pooler_output = self.pooler(last_hidden_state, lengths)
        pooler_output = self.fc(pooler_output.squeeze(1))
        return ModelOutput(
            last_hidden_state=last_hidden_state, 
            pooler_output=pooler_output
        )


class CosineSimilarityHead(torch.nn.Module):
    """
    This class implements the cosine similarity on the top of features.
    """
    def __init__(
        self,
        in_channels, 
        lin_blocks=0,
        hidden_size=192,
        num_classes=1211,
    ):
        super().__init__()
        self.blocks = nn.ModuleList()

        for block_index in range(lin_blocks):
            self.blocks.extend(
                [
                    nn.BatchNorm1d(num_features=in_channels),
                    nn.Linear(in_features=in_channels, out_features=hidden_size),
                ]
            )
            in_channels = hidden_size

        # Final Layer
        self.weight = nn.Parameter(
            torch.FloatTensor(num_classes, in_channels)
        )
        nn.init.xavier_uniform_(self.weight)

    def forward(self, x):
        """Returns the output probabilities over speakers.

        Arguments
        ---------
        x : torch.Tensor
            Torch tensor.
        """
        for layer in self.blocks:
            x = layer(x)

        # Need to be normalized
        x = F.linear(F.normalize(x), F.normalize(self.weight))
        return x


class XvectorPreTrainedModel(PreTrainedModel):

    config_class = XvectorConfig
    base_model_prefix = "xvector"
    main_input_name = "input_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Conv1d):
            nn.init.kaiming_normal_(module.weight.data)

        if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
            module.bias.data.zero_()


class XvectorModel(XvectorPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.compute_features = Fbank(
            n_mels=config.n_mels, 
            sample_rate=config.sample_rate, 
            win_length=config.win_length, 
            hop_length=config.hop_length, 
        )
        self.mean_var_norm = InputNormalization(
            mean_norm=config.mean_norm, 
            std_norm=config.std_norm, 
            norm_type=config.norm_type
        )
        self.embedding_model = XvectorEmbedder(
            in_channels=config.n_mels, 
            activation=nn.LeakyReLU, 
            tdnn_blocks=config.tdnn_blocks, 
            tdnn_channels=config.tdnn_channels, 
            tdnn_kernel_sizes=config.tdnn_kernel_sizes, 
            tdnn_dilations=config.tdnn_dilations, 
            hidden_size=config.hidden_size, 
        )

    def forward(self, input_values, lengths=None):
        x = input_values
        # if attention_mask is None:
        #     attention_mask = torch.ones_like(input_values, device=x.device)
        x = self.compute_features(x)
        x = self.mean_var_norm(x, lengths)
        output = self.embedding_model(x, lengths)
        return output