yangwang825
commited on
Commit
·
d3aaaf9
1
Parent(s):
d1b0c84
Upload BertForSequenceClassification
Browse files- config.json +6 -1
- modeling_bert.py +79 -1
- pytorch_model.bin +1 -1
config.json
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
{
|
2 |
"affine": true,
|
|
|
|
|
|
|
3 |
"attention_probs_dropout_prob": 0.1,
|
4 |
"auto_map": {
|
5 |
-
"AutoConfig": "configuration_bert.BertConfig"
|
|
|
6 |
},
|
7 |
"classifier_dropout": null,
|
8 |
"hidden_act": "gelu",
|
@@ -17,6 +21,7 @@
|
|
17 |
"num_hidden_layers": 12,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
|
|
20 |
"transformers_version": "4.33.3",
|
21 |
"type_vocab_size": 2,
|
22 |
"use_cache": true,
|
|
|
1 |
{
|
2 |
"affine": true,
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_bert.BertConfig",
|
9 |
+
"AutoModelForSequenceClassification": "modeling_bert.BertForSequenceClassification"
|
10 |
},
|
11 |
"classifier_dropout": null,
|
12 |
"hidden_act": "gelu",
|
|
|
21 |
"num_hidden_layers": 12,
|
22 |
"pad_token_id": 0,
|
23 |
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
"transformers_version": "4.33.3",
|
26 |
"type_vocab_size": 2,
|
27 |
"use_cache": true,
|
modeling_bert.py
CHANGED
@@ -16,7 +16,8 @@ from transformers.models.bert.modeling_bert import (
|
|
16 |
)
|
17 |
from transformers.modeling_outputs import (
|
18 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
19 |
-
SequenceClassifierOutput
|
|
|
20 |
)
|
21 |
|
22 |
from .configuration_bert import BertConfig
|
@@ -293,3 +294,80 @@ class BertForSequenceClassification(BertPreTrainedModel):
|
|
293 |
hidden_states=outputs.hidden_states,
|
294 |
attentions=outputs.attentions,
|
295 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
from transformers.modeling_outputs import (
|
18 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
19 |
+
SequenceClassifierOutput,
|
20 |
+
MultipleChoiceModelOutput
|
21 |
)
|
22 |
|
23 |
from .configuration_bert import BertConfig
|
|
|
294 |
hidden_states=outputs.hidden_states,
|
295 |
attentions=outputs.attentions,
|
296 |
)
|
297 |
+
|
298 |
+
|
299 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
300 |
+
|
301 |
+
def __init__(self, config):
|
302 |
+
super().__init__(config)
|
303 |
+
|
304 |
+
self.bert = BertModel(config)
|
305 |
+
classifier_dropout = (
|
306 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
307 |
+
)
|
308 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
309 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
310 |
+
|
311 |
+
# Initialize weights and apply final processing
|
312 |
+
self.post_init()
|
313 |
+
|
314 |
+
def forward(
|
315 |
+
self,
|
316 |
+
input_ids: Optional[torch.Tensor] = None,
|
317 |
+
attention_mask: Optional[torch.Tensor] = None,
|
318 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
319 |
+
position_ids: Optional[torch.Tensor] = None,
|
320 |
+
head_mask: Optional[torch.Tensor] = None,
|
321 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
322 |
+
labels: Optional[torch.Tensor] = None,
|
323 |
+
output_attentions: Optional[bool] = None,
|
324 |
+
output_hidden_states: Optional[bool] = None,
|
325 |
+
return_dict: Optional[bool] = None,
|
326 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
327 |
+
|
328 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
329 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
330 |
+
|
331 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
332 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
333 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
334 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
335 |
+
inputs_embeds = (
|
336 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
337 |
+
if inputs_embeds is not None
|
338 |
+
else None
|
339 |
+
)
|
340 |
+
|
341 |
+
outputs = self.bert(
|
342 |
+
input_ids,
|
343 |
+
attention_mask=attention_mask,
|
344 |
+
token_type_ids=token_type_ids,
|
345 |
+
position_ids=position_ids,
|
346 |
+
head_mask=head_mask,
|
347 |
+
inputs_embeds=inputs_embeds,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
output_hidden_states=output_hidden_states,
|
350 |
+
return_dict=return_dict,
|
351 |
+
)
|
352 |
+
|
353 |
+
pooled_output = outputs[1]
|
354 |
+
|
355 |
+
pooled_output = self.dropout(pooled_output)
|
356 |
+
logits = self.classifier(pooled_output)
|
357 |
+
reshaped_logits = logits.view(-1, num_choices)
|
358 |
+
|
359 |
+
loss = None
|
360 |
+
if labels is not None:
|
361 |
+
loss_fct = nn.CrossEntropyLoss()
|
362 |
+
loss = loss_fct(reshaped_logits, labels)
|
363 |
+
|
364 |
+
if not return_dict:
|
365 |
+
output = (reshaped_logits,) + outputs[2:]
|
366 |
+
return ((loss,) + output) if loss is not None else output
|
367 |
+
|
368 |
+
return MultipleChoiceModelOutput(
|
369 |
+
loss=loss,
|
370 |
+
logits=reshaped_logits,
|
371 |
+
hidden_states=outputs.hidden_states,
|
372 |
+
attentions=outputs.attentions,
|
373 |
+
)
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438000689
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0e4d45385d6072711fe037338b7d41b4c82e7310bfec45c493ee84f649432b7
|
3 |
size 438000689
|