yangwang825
commited on
Commit
·
aff5c65
1
Parent(s):
4eafb1b
Upload BertForSequenceClassification
Browse files- config.json +6 -1
- modeling_bert.py +149 -5
- pytorch_model.bin +1 -1
config.json
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
{
|
2 |
"affine": false,
|
3 |
"alpha": 1,
|
|
|
|
|
|
|
4 |
"attention_probs_dropout_prob": 0.1,
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "configuration_bert.BertConfig"
|
|
|
7 |
},
|
8 |
"center": false,
|
9 |
"classifier_dropout": null,
|
@@ -27,6 +31,7 @@
|
|
27 |
"r": 1,
|
28 |
"return_mean": true,
|
29 |
"return_std": true,
|
|
|
30 |
"transformers_version": "4.33.3",
|
31 |
"type_vocab_size": 2,
|
32 |
"use_cache": true,
|
|
|
1 |
{
|
2 |
"affine": false,
|
3 |
"alpha": 1,
|
4 |
+
"architectures": [
|
5 |
+
"BertForSequenceClassification"
|
6 |
+
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bert.BertConfig",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_bert.BertForSequenceClassification"
|
11 |
},
|
12 |
"center": false,
|
13 |
"classifier_dropout": null,
|
|
|
31 |
"r": 1,
|
32 |
"return_mean": true,
|
33 |
"return_std": true,
|
34 |
+
"torch_dtype": "float32",
|
35 |
"transformers_version": "4.33.3",
|
36 |
"type_vocab_size": 2,
|
37 |
"use_cache": true,
|
modeling_bert.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
|
|
3 |
from typing import Optional, List, Union, Tuple
|
4 |
from transformers import (
|
5 |
PretrainedConfig,
|
@@ -46,21 +48,163 @@ class BertPreTrainedModel(PreTrainedModel):
|
|
46 |
module.weight.data.fill_(1.0)
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
class BertPooler(nn.Module):
|
50 |
|
51 |
def __init__(self, config):
|
52 |
super().__init__()
|
53 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
self.activation = nn.Tanh()
|
|
|
55 |
|
56 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
57 |
# We "pool" the model by simply taking the hidden state corresponding
|
58 |
# to the first token.
|
59 |
-
|
60 |
-
|
|
|
61 |
pooled_output = self.activation(pooled_output)
|
62 |
return pooled_output
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
class BertModel(BertPreTrainedModel):
|
66 |
|
@@ -180,7 +324,7 @@ class BertModel(BertPreTrainedModel):
|
|
180 |
return_dict=return_dict,
|
181 |
)
|
182 |
sequence_output = encoder_outputs[0]
|
183 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
184 |
|
185 |
if not return_dict:
|
186 |
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from collections import OrderedDict
|
5 |
from typing import Optional, List, Union, Tuple
|
6 |
from transformers import (
|
7 |
PretrainedConfig,
|
|
|
48 |
module.weight.data.fill_(1.0)
|
49 |
|
50 |
|
51 |
+
class PFSA(nn.Module):
|
52 |
+
"""
|
53 |
+
https://openreview.net/pdf?id=isodM5jTA7h
|
54 |
+
"""
|
55 |
+
def __init__(self, input_dim, alpha=1):
|
56 |
+
super(PFSA, self).__init__()
|
57 |
+
self.input_dim = input_dim
|
58 |
+
self.alpha = alpha
|
59 |
+
|
60 |
+
def forward(self, x, mask=None):
|
61 |
+
"""
|
62 |
+
x: [B, T, F]
|
63 |
+
"""
|
64 |
+
x = x.transpose(1, 2)[..., None]
|
65 |
+
k = torch.mean(x, dim=[-1, -2], keepdim=True)
|
66 |
+
kd = torch.sqrt((k - k.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, 1, 1]
|
67 |
+
qd = torch.sqrt((x - x.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, T, 1]
|
68 |
+
C_qk = (((x - x.mean(dim=1, keepdim=True)) * (k - k.mean(dim=1, keepdim=True))).sum(dim=1, keepdim=True)) / (qd * kd)
|
69 |
+
A = (1 - torch.sigmoid(C_qk)) ** self.alpha
|
70 |
+
out = x * A
|
71 |
+
out = out.squeeze(dim=-1).transpose(1, 2)
|
72 |
+
return out
|
73 |
+
|
74 |
+
|
75 |
+
class PURE(nn.Module):
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
in_dim,
|
80 |
+
q=5,
|
81 |
+
r=1,
|
82 |
+
center=False,
|
83 |
+
num_iters=1,
|
84 |
+
return_mean=True,
|
85 |
+
return_std=True,
|
86 |
+
normalize=False,
|
87 |
+
do_pcr=True,
|
88 |
+
do_pfsa=True,
|
89 |
+
alpha=1,
|
90 |
+
*args, **kwargs
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
self.in_dim = in_dim
|
94 |
+
self.target_rank = q
|
95 |
+
self.num_pc_to_remove = r
|
96 |
+
self.center = center
|
97 |
+
self.num_iters = num_iters
|
98 |
+
self.return_mean = return_mean
|
99 |
+
self.return_std = return_std
|
100 |
+
self.normalize = normalize
|
101 |
+
self.do_pcr = do_pcr
|
102 |
+
self.do_pfsa = do_pfsa
|
103 |
+
# self.attention = SelfAttention(in_dim)
|
104 |
+
self.attention = PFSA(in_dim, alpha=alpha)
|
105 |
+
self.eps = 1e-5
|
106 |
+
|
107 |
+
if self.normalize:
|
108 |
+
self.norm = nn.Sequential(OrderedDict([
|
109 |
+
('relu', nn.LeakyReLU(inplace=True)),
|
110 |
+
('bn', nn.BatchNorm1d(in_dim)),
|
111 |
+
]))
|
112 |
+
|
113 |
+
def get_out_dim(self):
|
114 |
+
if self.return_mean and self.return_std:
|
115 |
+
self.out_dim = self.in_dim * 2
|
116 |
+
else:
|
117 |
+
self.out_dim = self.in_dim
|
118 |
+
return self.out_dim
|
119 |
+
|
120 |
+
def _compute_pc(self, x):
|
121 |
+
"""
|
122 |
+
x: (B, T, F)
|
123 |
+
"""
|
124 |
+
_, _, V = torch.pca_lowrank(x, q=self.target_rank, center=self.center, niter=self.num_iters)
|
125 |
+
pc = V.transpose(1, 2)[:, :self.num_pc_to_remove, :] # pc: [B, K, F]
|
126 |
+
return pc
|
127 |
+
|
128 |
+
def forward(self, x, attention_mask=None, *args, **kwargs):
|
129 |
+
"""
|
130 |
+
PCR -> Attention
|
131 |
+
x: (B, F, T)
|
132 |
+
"""
|
133 |
+
if self.normalize:
|
134 |
+
x = self.norm(x)
|
135 |
+
xt = x.transpose(1, 2)
|
136 |
+
if self.do_pcr:
|
137 |
+
pc = self._compute_pc(xt) # pc: [B, K, F]
|
138 |
+
xx = xt - xt @ pc.transpose(1, 2) @ pc # [B, T, F] * [B, F, K] * [B, K, F] = [B, T, F]
|
139 |
+
else:
|
140 |
+
xx = xt
|
141 |
+
if self.do_pfsa:
|
142 |
+
xx = self.attention(xx, attention_mask)
|
143 |
+
if self.normalize:
|
144 |
+
xx = F.normalize(xx, p=2, dim=2)
|
145 |
+
return xx
|
146 |
+
|
147 |
+
|
148 |
class BertPooler(nn.Module):
|
149 |
|
150 |
def __init__(self, config):
|
151 |
super().__init__()
|
152 |
+
self.pure = PURE(
|
153 |
+
config.hidden_size,
|
154 |
+
q=config.q,
|
155 |
+
r=config.r,
|
156 |
+
center=config.center,
|
157 |
+
num_iters=config.num_iters,
|
158 |
+
return_mean=config.return_mean,
|
159 |
+
return_std=config.return_std,
|
160 |
+
normalize=config.normalize,
|
161 |
+
do_pcr=config.do_pcr,
|
162 |
+
do_pfsa=config.do_pfsa,
|
163 |
+
alpha=config.alpha
|
164 |
+
)
|
165 |
+
if config.affine:
|
166 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
167 |
+
else:
|
168 |
+
self.dense = nn.Identity()
|
169 |
self.activation = nn.Tanh()
|
170 |
+
self.eps = 1e-5
|
171 |
|
172 |
+
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
173 |
# We "pool" the model by simply taking the hidden state corresponding
|
174 |
# to the first token.
|
175 |
+
hidden_states = self.pure(hidden_states.transpose(1, 2), attention_mask)
|
176 |
+
mean_tensor = self.mean_pooling(hidden_states, attention_mask)
|
177 |
+
pooled_output = self.dense(mean_tensor)
|
178 |
pooled_output = self.activation(pooled_output)
|
179 |
return pooled_output
|
180 |
|
181 |
+
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
|
182 |
+
"""Returns a tensor of epsilon Gaussian noise.
|
183 |
+
|
184 |
+
Arguments
|
185 |
+
---------
|
186 |
+
shape_of_tensor : tensor
|
187 |
+
It represents the size of tensor for generating Gaussian noise.
|
188 |
+
"""
|
189 |
+
gnoise = torch.randn(shape_of_tensor, device=device)
|
190 |
+
gnoise -= torch.min(gnoise)
|
191 |
+
gnoise /= torch.max(gnoise)
|
192 |
+
gnoise = self.eps * ((1 - 9) * gnoise + 9)
|
193 |
+
|
194 |
+
return gnoise
|
195 |
+
|
196 |
+
def add_noise(self, tensor):
|
197 |
+
gnoise = self._get_gauss_noise(tensor.size(), device=tensor.device)
|
198 |
+
gnoise = gnoise
|
199 |
+
tensor += gnoise
|
200 |
+
return tensor
|
201 |
+
|
202 |
+
def mean_pooling(self, token_embeddings, attention_mask):
|
203 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
204 |
+
mean = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
205 |
+
# mean = self.add_noise(mean)
|
206 |
+
return mean
|
207 |
+
|
208 |
|
209 |
class BertModel(BertPreTrainedModel):
|
210 |
|
|
|
324 |
return_dict=return_dict,
|
325 |
)
|
326 |
sequence_output = encoder_outputs[0]
|
327 |
+
pooled_output = self.pooler(sequence_output, attention_mask) if self.pooler is not None else None
|
328 |
|
329 |
if not return_dict:
|
330 |
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438000689
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64dd3354da4b868afe78cc83d9e51ed4ca20cab88015a22a38257b205c9eadd4
|
3 |
size 438000689
|