Edit model card

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1599
  • Accuracy: 0.5813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.8887 0.35
No log 2.0 80 1.5494 0.425
No log 3.0 120 1.4015 0.5188
No log 4.0 160 1.2919 0.55
No log 5.0 200 1.2205 0.5813
No log 6.0 240 1.2246 0.575
No log 7.0 280 1.2053 0.5312
No log 8.0 320 1.1487 0.5687
No log 9.0 360 1.1727 0.5437
No log 10.0 400 1.1459 0.55
No log 11.0 440 1.1313 0.5813
No log 12.0 480 1.0990 0.6062
1.1138 13.0 520 1.1020 0.6188

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
39
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yangswei/visual-emotion-classification

Finetuned
(1665)
this model

Space using yangswei/visual-emotion-classification 1

Evaluation results