root
commited on
Commit
•
070e573
1
Parent(s):
74b95fc
add ckpt27
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -0
- checkpoint-1000/config.json +30 -0
- checkpoint-1000/generation_config.json +6 -0
- checkpoint-1000/latest +1 -0
- checkpoint-1000/model.safetensors +3 -0
- checkpoint-1000/rng_state_0.pth +0 -0
- checkpoint-1000/rng_state_1.pth +0 -0
- checkpoint-1000/rng_state_2.pth +0 -0
- checkpoint-1000/rng_state_3.pth +0 -0
- checkpoint-1000/rng_state_4.pth +0 -0
- checkpoint-1000/rng_state_5.pth +0 -0
- checkpoint-1000/rng_state_6.pth +0 -0
- checkpoint-1000/rng_state_7.pth +0 -0
- checkpoint-1000/scheduler.pt +0 -0
- checkpoint-1000/special_tokens_map.json +24 -0
- checkpoint-1000/tokenizer.json +0 -0
- checkpoint-1000/tokenizer.model +0 -0
- checkpoint-1000/tokenizer_config.json +46 -0
- checkpoint-1000/trainer_state.json +733 -0
- checkpoint-1000/training_args.bin +3 -0
- checkpoint-1000/zero_to_fp32.py +604 -0
- checkpoint-27/config.json +30 -0
- checkpoint-27/generation_config.json +6 -0
- checkpoint-27/model.safetensors +3 -0
- checkpoint-27/special_tokens_map.json +24 -0
- checkpoint-27/tokenizer.json +0 -0
- checkpoint-27/tokenizer.model +3 -0
- checkpoint-27/tokenizer_config.json +43 -0
- checkpoint-4500/config.json +30 -0
- checkpoint-4500/eval-20241021102538-11_tasks.log +277 -0
- checkpoint-4500/generation_config.json +6 -0
- checkpoint-4500/latest +1 -0
- checkpoint-4500/model.safetensors +3 -0
- checkpoint-4500/rng_state_0.pth +0 -0
- checkpoint-4500/rng_state_1.pth +0 -0
- checkpoint-4500/rng_state_2.pth +0 -0
- checkpoint-4500/rng_state_3.pth +0 -0
- checkpoint-4500/rng_state_4.pth +0 -0
- checkpoint-4500/rng_state_5.pth +0 -0
- checkpoint-4500/rng_state_6.pth +0 -0
- checkpoint-4500/rng_state_7.pth +0 -0
- checkpoint-4500/scheduler.pt +0 -0
- checkpoint-4500/special_tokens_map.json +24 -0
- checkpoint-4500/tokenizer.json +0 -0
- checkpoint-4500/tokenizer.model +0 -0
- checkpoint-4500/tokenizer_config.json +46 -0
- checkpoint-4500/trainer_state.json +3215 -0
- checkpoint-4500/training_args.bin +3 -0
- checkpoint-4500/zero_to_fp32.py +604 -0
- checkpoint-579/config.json +30 -0
.gitattributes
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
@@ -33,3 +34,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
+
=======
|
38 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
40 |
+
>>>>>>> 421f174 (Initial commit)
|
checkpoint-1000/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/ddn/yrm/model/MMfreeLM-370M",
|
3 |
+
"architectures": [
|
4 |
+
"HGRNBitForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_mode": "fused_recurrent",
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"conv_size": 4,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"expand_ratio": 1,
|
11 |
+
"fuse_cross_entropy": true,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_ratio": 4,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": null,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "hgrn_bit",
|
19 |
+
"num_heads": 1,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"rms_norm_eps": 1e-06,
|
22 |
+
"share_conv_kernel": true,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.45.2",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_lower_bound": true,
|
28 |
+
"use_short_conv": false,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
checkpoint-1000/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.45.2"
|
6 |
+
}
|
checkpoint-1000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1000
|
checkpoint-1000/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c61faaa032568d4957872d607d52905b4a706bb65c63c307c0c419a0781ec9d
|
3 |
+
size 748256328
|
checkpoint-1000/rng_state_0.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_1.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_2.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_3.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_4.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_5.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_6.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/rng_state_7.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-1000/scheduler.pt
ADDED
Binary file (1.06 kB). View file
|
|
checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-1000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1000/tokenizer.model
ADDED
Binary file (493 kB). View file
|
|
checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": true,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": "</s>",
|
39 |
+
"padding_side": "right",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"spaces_between_special_tokens": false,
|
42 |
+
"split_special_tokens": false,
|
43 |
+
"tokenizer_class": "LlamaTokenizer",
|
44 |
+
"unk_token": "<unk>",
|
45 |
+
"use_default_system_prompt": false
|
46 |
+
}
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.5839793281653747,
|
5 |
+
"eval_steps": 5000,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.025839793281653745,
|
13 |
+
"grad_norm": 21431.55859375,
|
14 |
+
"learning_rate": 3.4188034188034193e-06,
|
15 |
+
"loss": 5737.0758,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05167958656330749,
|
20 |
+
"grad_norm": 21565.48046875,
|
21 |
+
"learning_rate": 6.837606837606839e-06,
|
22 |
+
"loss": 5749.3406,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.07751937984496124,
|
27 |
+
"grad_norm": 17265.16796875,
|
28 |
+
"learning_rate": 1.0256410256410256e-05,
|
29 |
+
"loss": 5788.193,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.10335917312661498,
|
34 |
+
"grad_norm": 16618.6875,
|
35 |
+
"learning_rate": 1.3675213675213677e-05,
|
36 |
+
"loss": 5726.6566,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.12919896640826872,
|
41 |
+
"grad_norm": 18382.3359375,
|
42 |
+
"learning_rate": 1.7094017094017095e-05,
|
43 |
+
"loss": 5755.7125,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.15503875968992248,
|
48 |
+
"grad_norm": 1329.3785400390625,
|
49 |
+
"learning_rate": 2.0512820512820512e-05,
|
50 |
+
"loss": 3448.4984,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.18087855297157623,
|
55 |
+
"grad_norm": 982.5582885742188,
|
56 |
+
"learning_rate": 2.393162393162393e-05,
|
57 |
+
"loss": 793.4248,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.20671834625322996,
|
62 |
+
"grad_norm": 441.6934814453125,
|
63 |
+
"learning_rate": 2.7350427350427355e-05,
|
64 |
+
"loss": 664.0245,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.23255813953488372,
|
69 |
+
"grad_norm": 384.9512634277344,
|
70 |
+
"learning_rate": 3.0769230769230774e-05,
|
71 |
+
"loss": 590.2515,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.25839793281653745,
|
76 |
+
"grad_norm": 1645.2818603515625,
|
77 |
+
"learning_rate": 3.418803418803419e-05,
|
78 |
+
"loss": 540.1542,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.2842377260981912,
|
83 |
+
"grad_norm": 656.8567504882812,
|
84 |
+
"learning_rate": 3.760683760683761e-05,
|
85 |
+
"loss": 540.0785,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.31007751937984496,
|
90 |
+
"grad_norm": 209.0157928466797,
|
91 |
+
"learning_rate": 3.999918503621906e-05,
|
92 |
+
"loss": 500.4066,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3359173126614987,
|
97 |
+
"grad_norm": 312.04351806640625,
|
98 |
+
"learning_rate": 3.9984698638788994e-05,
|
99 |
+
"loss": 476.6278,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.36175710594315247,
|
104 |
+
"grad_norm": 111.13858795166016,
|
105 |
+
"learning_rate": 3.995211703336012e-05,
|
106 |
+
"loss": 457.4648,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.3875968992248062,
|
111 |
+
"grad_norm": 198.55479431152344,
|
112 |
+
"learning_rate": 3.9901469721049156e-05,
|
113 |
+
"loss": 439.1863,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.4134366925064599,
|
118 |
+
"grad_norm": 179.00514221191406,
|
119 |
+
"learning_rate": 3.983280256062371e-05,
|
120 |
+
"loss": 435.1474,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.4392764857881137,
|
125 |
+
"grad_norm": 204.16162109375,
|
126 |
+
"learning_rate": 3.9746177726979355e-05,
|
127 |
+
"loss": 444.1413,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.46511627906976744,
|
132 |
+
"grad_norm": 232.0103759765625,
|
133 |
+
"learning_rate": 3.964167365484312e-05,
|
134 |
+
"loss": 427.4143,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.4909560723514212,
|
139 |
+
"grad_norm": 75.20649719238281,
|
140 |
+
"learning_rate": 3.951938496775456e-05,
|
141 |
+
"loss": 420.458,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.5167958656330749,
|
146 |
+
"grad_norm": 270.50970458984375,
|
147 |
+
"learning_rate": 3.937942239238855e-05,
|
148 |
+
"loss": 406.7704,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.5426356589147286,
|
153 |
+
"grad_norm": 146.1454315185547,
|
154 |
+
"learning_rate": 3.92219126582975e-05,
|
155 |
+
"loss": 407.9724,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.5684754521963824,
|
160 |
+
"grad_norm": 205.81834411621094,
|
161 |
+
"learning_rate": 3.904699838316363e-05,
|
162 |
+
"loss": 416.5542,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.5943152454780362,
|
167 |
+
"grad_norm": 120.94080352783203,
|
168 |
+
"learning_rate": 3.885483794366543e-05,
|
169 |
+
"loss": 415.2502,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.6201550387596899,
|
174 |
+
"grad_norm": 108.84484100341797,
|
175 |
+
"learning_rate": 3.86456053320749e-05,
|
176 |
+
"loss": 401.6582,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.6459948320413437,
|
181 |
+
"grad_norm": 240.042724609375,
|
182 |
+
"learning_rate": 3.841948999871579e-05,
|
183 |
+
"loss": 398.7828,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.6718346253229974,
|
188 |
+
"grad_norm": 74.43096160888672,
|
189 |
+
"learning_rate": 3.817669668042516e-05,
|
190 |
+
"loss": 389.9398,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.6976744186046512,
|
195 |
+
"grad_norm": 209.9810028076172,
|
196 |
+
"learning_rate": 3.7917445215173765e-05,
|
197 |
+
"loss": 389.4235,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.7235142118863049,
|
202 |
+
"grad_norm": 109.08077239990234,
|
203 |
+
"learning_rate": 3.7641970343013115e-05,
|
204 |
+
"loss": 392.0608,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.7493540051679587,
|
209 |
+
"grad_norm": 109.67909240722656,
|
210 |
+
"learning_rate": 3.7350521493529335e-05,
|
211 |
+
"loss": 390.3438,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.7751937984496124,
|
216 |
+
"grad_norm": 248.89028930664062,
|
217 |
+
"learning_rate": 3.704336255999636e-05,
|
218 |
+
"loss": 387.3038,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.8010335917312662,
|
223 |
+
"grad_norm": 119.14262390136719,
|
224 |
+
"learning_rate": 3.672077166043294e-05,
|
225 |
+
"loss": 377.6907,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.8268733850129198,
|
230 |
+
"grad_norm": 142.8026123046875,
|
231 |
+
"learning_rate": 3.638304088577984e-05,
|
232 |
+
"loss": 385.1249,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.8527131782945736,
|
237 |
+
"grad_norm": 173.82833862304688,
|
238 |
+
"learning_rate": 3.603047603542515e-05,
|
239 |
+
"loss": 375.1511,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.8785529715762274,
|
244 |
+
"grad_norm": 164.8625946044922,
|
245 |
+
"learning_rate": 3.566339634031729e-05,
|
246 |
+
"loss": 375.9214,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.9043927648578811,
|
251 |
+
"grad_norm": 117.82234191894531,
|
252 |
+
"learning_rate": 3.528213417391633e-05,
|
253 |
+
"loss": 377.7271,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.9302325581395349,
|
258 |
+
"grad_norm": 41.274600982666016,
|
259 |
+
"learning_rate": 3.488703475124541e-05,
|
260 |
+
"loss": 368.712,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.9560723514211886,
|
265 |
+
"grad_norm": 138.67919921875,
|
266 |
+
"learning_rate": 3.4478455816314724e-05,
|
267 |
+
"loss": 375.8104,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.9819121447028424,
|
272 |
+
"grad_norm": 61.867340087890625,
|
273 |
+
"learning_rate": 3.405676731820106e-05,
|
274 |
+
"loss": 374.8659,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 1.0077519379844961,
|
279 |
+
"grad_norm": 168.50962829589844,
|
280 |
+
"learning_rate": 3.362235107607629e-05,
|
281 |
+
"loss": 367.1276,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 1.0335917312661498,
|
286 |
+
"grad_norm": 94.74224853515625,
|
287 |
+
"learning_rate": 3.317560043348795e-05,
|
288 |
+
"loss": 361.7362,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.0594315245478036,
|
293 |
+
"grad_norm": 57.599578857421875,
|
294 |
+
"learning_rate": 3.2716919902205154e-05,
|
295 |
+
"loss": 360.4581,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.0852713178294573,
|
300 |
+
"grad_norm": 127.81239318847656,
|
301 |
+
"learning_rate": 3.224672479595208e-05,
|
302 |
+
"loss": 358.2213,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.1111111111111112,
|
307 |
+
"grad_norm": 262.8865661621094,
|
308 |
+
"learning_rate": 3.176544085436091e-05,
|
309 |
+
"loss": 360.1062,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 1.1369509043927648,
|
314 |
+
"grad_norm": 247.9445343017578,
|
315 |
+
"learning_rate": 3.127350385748453e-05,
|
316 |
+
"loss": 367.3566,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 1.1627906976744187,
|
321 |
+
"grad_norm": 204.389892578125,
|
322 |
+
"learning_rate": 3.077135923121809e-05,
|
323 |
+
"loss": 354.9228,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.1886304909560723,
|
328 |
+
"grad_norm": 260.5009460449219,
|
329 |
+
"learning_rate": 3.0259461643986784e-05,
|
330 |
+
"loss": 356.919,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.2144702842377262,
|
335 |
+
"grad_norm": 149.97607421875,
|
336 |
+
"learning_rate": 2.9738274595064845e-05,
|
337 |
+
"loss": 354.5676,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.2403100775193798,
|
342 |
+
"grad_norm": 194.74737548828125,
|
343 |
+
"learning_rate": 2.9208269994898725e-05,
|
344 |
+
"loss": 353.6357,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.2661498708010335,
|
349 |
+
"grad_norm": 200.73731994628906,
|
350 |
+
"learning_rate": 2.8669927737814244e-05,
|
351 |
+
"loss": 363.2115,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.2919896640826873,
|
356 |
+
"grad_norm": 66.00718688964844,
|
357 |
+
"learning_rate": 2.8123735267494826e-05,
|
358 |
+
"loss": 350.5789,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.3178294573643412,
|
363 |
+
"grad_norm": 136.6959991455078,
|
364 |
+
"learning_rate": 2.7570187135624063e-05,
|
365 |
+
"loss": 347.9595,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.3436692506459949,
|
370 |
+
"grad_norm": 40.67978286743164,
|
371 |
+
"learning_rate": 2.7009784554092338e-05,
|
372 |
+
"loss": 351.9972,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.3695090439276485,
|
377 |
+
"grad_norm": 34.59364318847656,
|
378 |
+
"learning_rate": 2.6443034941172962e-05,
|
379 |
+
"loss": 349.3325,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.3953488372093024,
|
384 |
+
"grad_norm": 130.43624877929688,
|
385 |
+
"learning_rate": 2.5870451462078697e-05,
|
386 |
+
"loss": 345.4973,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.421188630490956,
|
391 |
+
"grad_norm": 52.83992004394531,
|
392 |
+
"learning_rate": 2.529255256431472e-05,
|
393 |
+
"loss": 350.3788,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.4470284237726099,
|
398 |
+
"grad_norm": 92.32342529296875,
|
399 |
+
"learning_rate": 2.4709861508248688e-05,
|
400 |
+
"loss": 350.4281,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.4728682170542635,
|
405 |
+
"grad_norm": 56.88703536987305,
|
406 |
+
"learning_rate": 2.4122905893323006e-05,
|
407 |
+
"loss": 349.739,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.4987080103359174,
|
412 |
+
"grad_norm": 73.592529296875,
|
413 |
+
"learning_rate": 2.3532217180338283e-05,
|
414 |
+
"loss": 355.5978,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.524547803617571,
|
419 |
+
"grad_norm": 107.73036193847656,
|
420 |
+
"learning_rate": 2.2938330210240424e-05,
|
421 |
+
"loss": 338.8647,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.550387596899225,
|
426 |
+
"grad_norm": 151.14724731445312,
|
427 |
+
"learning_rate": 2.2341782719847292e-05,
|
428 |
+
"loss": 339.6862,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.5762273901808785,
|
433 |
+
"grad_norm": 109.76298522949219,
|
434 |
+
"learning_rate": 2.174311485495317e-05,
|
435 |
+
"loss": 351.1045,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.6020671834625322,
|
440 |
+
"grad_norm": 75.17061614990234,
|
441 |
+
"learning_rate": 2.1142868681252072e-05,
|
442 |
+
"loss": 344.3581,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.627906976744186,
|
447 |
+
"grad_norm": 43.415557861328125,
|
448 |
+
"learning_rate": 2.0541587693522694e-05,
|
449 |
+
"loss": 346.1661,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.65374677002584,
|
454 |
+
"grad_norm": 95.63790893554688,
|
455 |
+
"learning_rate": 1.99398163235193e-05,
|
456 |
+
"loss": 340.8094,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.6795865633074936,
|
461 |
+
"grad_norm": 173.1468048095703,
|
462 |
+
"learning_rate": 1.9338099447014348e-05,
|
463 |
+
"loss": 344.9255,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.7054263565891472,
|
468 |
+
"grad_norm": 185.2141571044922,
|
469 |
+
"learning_rate": 1.8736981890438973e-05,
|
470 |
+
"loss": 345.9086,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.731266149870801,
|
475 |
+
"grad_norm": 185.66473388671875,
|
476 |
+
"learning_rate": 1.8137007937568198e-05,
|
477 |
+
"loss": 342.1713,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.757105943152455,
|
482 |
+
"grad_norm": 135.51266479492188,
|
483 |
+
"learning_rate": 1.7538720836697505e-05,
|
484 |
+
"loss": 336.7293,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.7829457364341086,
|
489 |
+
"grad_norm": 74.66438293457031,
|
490 |
+
"learning_rate": 1.6942662308756942e-05,
|
491 |
+
"loss": 340.9484,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.8087855297157622,
|
496 |
+
"grad_norm": 76.51793670654297,
|
497 |
+
"learning_rate": 1.6349372056808196e-05,
|
498 |
+
"loss": 332.7376,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.8346253229974159,
|
503 |
+
"grad_norm": 88.05294799804688,
|
504 |
+
"learning_rate": 1.5759387277368817e-05,
|
505 |
+
"loss": 337.1342,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.8604651162790697,
|
510 |
+
"grad_norm": 82.69217681884766,
|
511 |
+
"learning_rate": 1.517324217400589e-05,
|
512 |
+
"loss": 338.4325,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.8863049095607236,
|
517 |
+
"grad_norm": 49.15666580200195,
|
518 |
+
"learning_rate": 1.4591467473639769e-05,
|
519 |
+
"loss": 333.9558,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.9121447028423773,
|
524 |
+
"grad_norm": 100.37080383300781,
|
525 |
+
"learning_rate": 1.4014589945995718e-05,
|
526 |
+
"loss": 339.7346,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.937984496124031,
|
531 |
+
"grad_norm": 64.05115509033203,
|
532 |
+
"learning_rate": 1.3443131926638637e-05,
|
533 |
+
"loss": 336.4353,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.9638242894056848,
|
538 |
+
"grad_norm": 40.96150207519531,
|
539 |
+
"learning_rate": 1.287761084402265e-05,
|
540 |
+
"loss": 344.2413,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.9896640826873386,
|
545 |
+
"grad_norm": 42.53565979003906,
|
546 |
+
"learning_rate": 1.2318538750983903e-05,
|
547 |
+
"loss": 326.7869,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 2.0155038759689923,
|
552 |
+
"grad_norm": 33.191429138183594,
|
553 |
+
"learning_rate": 1.1766421861100734e-05,
|
554 |
+
"loss": 330.7202,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.041343669250646,
|
559 |
+
"grad_norm": 25.623939514160156,
|
560 |
+
"learning_rate": 1.1221760090340987e-05,
|
561 |
+
"loss": 332.5341,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 2.0671834625322996,
|
566 |
+
"grad_norm": 41.96136474609375,
|
567 |
+
"learning_rate": 1.068504660441154e-05,
|
568 |
+
"loss": 332.9494,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 2.0930232558139537,
|
573 |
+
"grad_norm": 27.031042098999023,
|
574 |
+
"learning_rate": 1.0156767372219854e-05,
|
575 |
+
"loss": 325.7135,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 2.1188630490956073,
|
580 |
+
"grad_norm": 58.57283401489258,
|
581 |
+
"learning_rate": 9.637400725851947e-06,
|
582 |
+
"loss": 331.5063,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 2.144702842377261,
|
587 |
+
"grad_norm": 54.434139251708984,
|
588 |
+
"learning_rate": 9.127416927465047e-06,
|
589 |
+
"loss": 327.2943,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 2.1705426356589146,
|
594 |
+
"grad_norm": 36.624176025390625,
|
595 |
+
"learning_rate": 8.627277743487296e-06,
|
596 |
+
"loss": 332.8677,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.1963824289405687,
|
601 |
+
"grad_norm": 53.19684600830078,
|
602 |
+
"learning_rate": 8.137436026509862e-06,
|
603 |
+
"loss": 333.1244,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 2.2222222222222223,
|
608 |
+
"grad_norm": 37.776268005371094,
|
609 |
+
"learning_rate": 7.65833530525017e-06,
|
610 |
+
"loss": 329.4649,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 2.248062015503876,
|
615 |
+
"grad_norm": 26.57048797607422,
|
616 |
+
"learning_rate": 7.190409382957408e-06,
|
617 |
+
"loss": 336.0614,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 2.2739018087855296,
|
622 |
+
"grad_norm": 57.234336853027344,
|
623 |
+
"learning_rate": 6.734081944624027e-06,
|
624 |
+
"loss": 328.4645,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 2.2997416020671837,
|
629 |
+
"grad_norm": 56.26626205444336,
|
630 |
+
"learning_rate": 6.289766173358826e-06,
|
631 |
+
"loss": 324.8838,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.3255813953488373,
|
636 |
+
"grad_norm": 48.253318786621094,
|
637 |
+
"learning_rate": 5.857864376269051e-06,
|
638 |
+
"loss": 327.6445,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.351421188630491,
|
643 |
+
"grad_norm": 28.283784866333008,
|
644 |
+
"learning_rate": 5.438767620190108e-06,
|
645 |
+
"loss": 326.632,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 2.3772609819121446,
|
650 |
+
"grad_norm": 41.68576431274414,
|
651 |
+
"learning_rate": 5.032855377592904e-06,
|
652 |
+
"loss": 325.8222,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.4031007751937983,
|
657 |
+
"grad_norm": 22.881074905395508,
|
658 |
+
"learning_rate": 4.64049518298932e-06,
|
659 |
+
"loss": 324.5381,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.4289405684754524,
|
664 |
+
"grad_norm": 26.17159652709961,
|
665 |
+
"learning_rate": 4.262042300146898e-06,
|
666 |
+
"loss": 330.8671,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.454780361757106,
|
671 |
+
"grad_norm": 44.048988342285156,
|
672 |
+
"learning_rate": 3.897839400414187e-06,
|
673 |
+
"loss": 326.6512,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.4806201550387597,
|
678 |
+
"grad_norm": 29.078561782836914,
|
679 |
+
"learning_rate": 3.548216252447867e-06,
|
680 |
+
"loss": 321.7997,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.5064599483204133,
|
685 |
+
"grad_norm": 20.772472381591797,
|
686 |
+
"learning_rate": 3.21348942362272e-06,
|
687 |
+
"loss": 331.5863,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.532299741602067,
|
692 |
+
"grad_norm": 20.700204849243164,
|
693 |
+
"learning_rate": 2.893961993394667e-06,
|
694 |
+
"loss": 326.034,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 2.558139534883721,
|
699 |
+
"grad_norm": 52.08636474609375,
|
700 |
+
"learning_rate": 2.5899232788765604e-06,
|
701 |
+
"loss": 329.6624,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 2.5839793281653747,
|
706 |
+
"grad_norm": 26.22823715209961,
|
707 |
+
"learning_rate": 2.3016485728750724e-06,
|
708 |
+
"loss": 324.0566,
|
709 |
+
"step": 1000
|
710 |
+
}
|
711 |
+
],
|
712 |
+
"logging_steps": 10,
|
713 |
+
"max_steps": 1161,
|
714 |
+
"num_input_tokens_seen": 0,
|
715 |
+
"num_train_epochs": 3,
|
716 |
+
"save_steps": 1000,
|
717 |
+
"stateful_callbacks": {
|
718 |
+
"TrainerControl": {
|
719 |
+
"args": {
|
720 |
+
"should_epoch_stop": false,
|
721 |
+
"should_evaluate": false,
|
722 |
+
"should_log": false,
|
723 |
+
"should_save": true,
|
724 |
+
"should_training_stop": false
|
725 |
+
},
|
726 |
+
"attributes": {}
|
727 |
+
}
|
728 |
+
},
|
729 |
+
"total_flos": 5.2584857851448525e+17,
|
730 |
+
"train_batch_size": 16,
|
731 |
+
"trial_name": null,
|
732 |
+
"trial_params": null
|
733 |
+
}
|
checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9a1192bc455be45a1d733feace997991864076dc60e3ce9e8b39722b0631e4c
|
3 |
+
size 6648
|
checkpoint-1000/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-27/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/apdcephfs_qy3/share_301069248/users/rummyyang/matmulfreellm/model/MMfreeLM-370M",
|
3 |
+
"architectures": [
|
4 |
+
"HGRNBitForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_mode": "fused_recurrent",
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"conv_size": 4,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"expand_ratio": 1,
|
11 |
+
"fuse_cross_entropy": true,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_ratio": 4,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": null,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "hgrn_bit",
|
19 |
+
"num_heads": 1,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"rms_norm_eps": 1e-06,
|
22 |
+
"share_conv_kernel": true,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.45.2",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_lower_bound": true,
|
28 |
+
"use_short_conv": false,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
checkpoint-27/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.45.2"
|
6 |
+
}
|
checkpoint-27/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25a683b43602104752ed2d95020d4e9964a210f1e95d0524ecd5921909e2b730
|
3 |
+
size 1496472568
|
checkpoint-27/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-27/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-27/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
checkpoint-27/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
checkpoint-4500/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/usr/yrm/model/MMfreeLM-370M",
|
3 |
+
"architectures": [
|
4 |
+
"HGRNBitForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_mode": "fused_recurrent",
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"conv_size": 4,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"expand_ratio": 1,
|
11 |
+
"fuse_cross_entropy": true,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_ratio": 4,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": null,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "hgrn_bit",
|
19 |
+
"num_heads": 1,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"rms_norm_eps": 1e-06,
|
22 |
+
"share_conv_kernel": true,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.45.2",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_lower_bound": true,
|
28 |
+
"use_short_conv": false,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
checkpoint-4500/eval-20241021102538-11_tasks.log
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hf (pretrained=/apdcephfs_qy3/share_301069248/users/rummyyang/LLaMA-Factory/saves/llama3-1b/lora/pretrain/sft/checkpoint-4500), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 128
|
2 |
+
| Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr|
|
3 |
+
|----------------------------------------------------|-------|----------------|-----:|-----------|---|-----:|---|-----:|
|
4 |
+
|arc_challenge | 1|none | 0|acc |↑ |0.2048|± |0.0118|
|
5 |
+
| | |none | 0|acc_norm |↑ |0.2372|± |0.0124|
|
6 |
+
|arc_easy | 1|none | 0|acc |↑ |0.4407|± |0.0102|
|
7 |
+
| | |none | 0|acc_norm |↑ |0.4007|± |0.0101|
|
8 |
+
|ceval-valid |N/A |none | 0|acc |↑ |0.2623|± |0.0120|
|
9 |
+
|ceval-valid_accountant | 1|none | 0|acc |↑ |0.2449|± |0.0621|
|
10 |
+
|ceval-valid_advanced_mathematics | 1|none | 0|acc |↑ |0.2105|± |0.0961|
|
11 |
+
|ceval-valid_art_studies | 1|none | 0|acc |↑ |0.1515|± |0.0634|
|
12 |
+
|ceval-valid_basic_medicine | 1|none | 0|acc |↑ |0.3684|± |0.1137|
|
13 |
+
|ceval-valid_business_administration | 1|none | 0|acc |↑ |0.2727|± |0.0787|
|
14 |
+
|ceval-valid_chinese_language_and_literature | 1|none | 0|acc |↑ |0.1304|± |0.0718|
|
15 |
+
|ceval-valid_civil_servant | 1|none | 0|acc |↑ |0.1702|± |0.0554|
|
16 |
+
|ceval-valid_clinical_medicine | 1|none | 0|acc |↑ |0.2273|± |0.0914|
|
17 |
+
|ceval-valid_college_chemistry | 1|none | 0|acc |↑ |0.2500|± |0.0903|
|
18 |
+
|ceval-valid_college_economics | 1|none | 0|acc |↑ |0.3455|± |0.0647|
|
19 |
+
|ceval-valid_college_physics | 1|none | 0|acc |↑ |0.2632|± |0.1038|
|
20 |
+
|ceval-valid_college_programming | 1|none | 0|acc |↑ |0.2973|± |0.0762|
|
21 |
+
|ceval-valid_computer_architecture | 1|none | 0|acc |↑ |0.2857|± |0.1010|
|
22 |
+
|ceval-valid_computer_network | 1|none | 0|acc |↑ |0.4737|± |0.1177|
|
23 |
+
|ceval-valid_discrete_mathematics | 1|none | 0|acc |↑ |0.2500|± |0.1118|
|
24 |
+
|ceval-valid_education_science | 1|none | 0|acc |↑ |0.3448|± |0.0898|
|
25 |
+
|ceval-valid_electrical_engineer | 1|none | 0|acc |↑ |0.2973|± |0.0762|
|
26 |
+
|ceval-valid_environmental_impact_assessment_engineer| 1|none | 0|acc |↑ |0.2903|± |0.0829|
|
27 |
+
|ceval-valid_fire_engineer | 1|none | 0|acc |↑ |0.3226|± |0.0853|
|
28 |
+
|ceval-valid_high_school_biology | 1|none | 0|acc |↑ |0.2632|± |0.1038|
|
29 |
+
|ceval-valid_high_school_chemistry | 1|none | 0|acc |↑ |0.2632|± |0.1038|
|
30 |
+
|ceval-valid_high_school_chinese | 1|none | 0|acc |↑ |0.1579|± |0.0859|
|
31 |
+
|ceval-valid_high_school_geography | 1|none | 0|acc |↑ |0.2632|± |0.1038|
|
32 |
+
|ceval-valid_high_school_history | 1|none | 0|acc |↑ |0.5500|± |0.1141|
|
33 |
+
|ceval-valid_high_school_mathematics | 1|none | 0|acc |↑ |0.2222|± |0.1008|
|
34 |
+
|ceval-valid_high_school_physics | 1|none | 0|acc |↑ |0.2105|± |0.0961|
|
35 |
+
|ceval-valid_high_school_politics | 1|none | 0|acc |↑ |0.1579|± |0.0859|
|
36 |
+
|ceval-valid_ideological_and_moral_cultivation | 1|none | 0|acc |↑ |0.3684|± |0.1137|
|
37 |
+
|ceval-valid_law | 1|none | 0|acc |↑ |0.1667|± |0.0777|
|
38 |
+
|ceval-valid_legal_professional | 1|none | 0|acc |↑ |0.2174|± |0.0879|
|
39 |
+
|ceval-valid_logic | 1|none | 0|acc |↑ |0.1818|± |0.0842|
|
40 |
+
|ceval-valid_mao_zedong_thought | 1|none | 0|acc |↑ |0.2500|± |0.0903|
|
41 |
+
|ceval-valid_marxism | 1|none | 0|acc |↑ |0.3684|± |0.1137|
|
42 |
+
|ceval-valid_metrology_engineer | 1|none | 0|acc |↑ |0.1667|± |0.0777|
|
43 |
+
|ceval-valid_middle_school_biology | 1|none | 0|acc |↑ |0.0952|± |0.0656|
|
44 |
+
|ceval-valid_middle_school_chemistry | 1|none | 0|acc |↑ |0.3000|± |0.1051|
|
45 |
+
|ceval-valid_middle_school_geography | 1|none | 0|acc |↑ |0.2500|± |0.1306|
|
46 |
+
|ceval-valid_middle_school_history | 1|none | 0|acc |↑ |0.0455|± |0.0455|
|
47 |
+
|ceval-valid_middle_school_mathematics | 1|none | 0|acc |↑ |0.2105|± |0.0961|
|
48 |
+
|ceval-valid_middle_school_physics | 1|none | 0|acc |↑ |0.2632|± |0.1038|
|
49 |
+
|ceval-valid_middle_school_politics | 1|none | 0|acc |↑ |0.2381|± |0.0952|
|
50 |
+
|ceval-valid_modern_chinese_history | 1|none | 0|acc |↑ |0.1739|± |0.0808|
|
51 |
+
|ceval-valid_operating_system | 1|none | 0|acc |↑ |0.3158|± |0.1096|
|
52 |
+
|ceval-valid_physician | 1|none | 0|acc |↑ |0.2653|± |0.0637|
|
53 |
+
|ceval-valid_plant_protection | 1|none | 0|acc |↑ |0.2273|± |0.0914|
|
54 |
+
|ceval-valid_probability_and_statistics | 1|none | 0|acc |↑ |0.3889|± |0.1182|
|
55 |
+
|ceval-valid_professional_tour_guide | 1|none | 0|acc |↑ |0.2759|± |0.0845|
|
56 |
+
|ceval-valid_sports_science | 1|none | 0|acc |↑ |0.2105|± |0.0961|
|
57 |
+
|ceval-valid_tax_accountant | 1|none | 0|acc |↑ |0.3265|± |0.0677|
|
58 |
+
|ceval-valid_teacher_qualification | 1|none | 0|acc |↑ |0.2955|± |0.0696|
|
59 |
+
|ceval-valid_urban_and_rural_planner | 1|none | 0|acc |↑ |0.3043|± |0.0686|
|
60 |
+
|ceval-valid_veterinary_medicine | 1|none | 0|acc |↑ |0.3043|± |0.0981|
|
61 |
+
|cmmlu |N/A |none | 0|acc |↑ |0.2475|± |0.0040|
|
62 |
+
| | |none | 0|acc_norm |↑ |0.2475|± |0.0040|
|
63 |
+
|cmmlu_agronomy | 0|none | 0|acc |↑ |0.2544|± |0.0336|
|
64 |
+
| | |none | 0|acc_norm |↑ |0.2544|± |0.0336|
|
65 |
+
|cmmlu_anatomy | 0|none | 0|acc |↑ |0.2500|± |0.0357|
|
66 |
+
| | |none | 0|acc_norm |↑ |0.2500|± |0.0357|
|
67 |
+
|cmmlu_ancient_chinese | 0|none | 0|acc |↑ |0.2134|± |0.0321|
|
68 |
+
| | |none | 0|acc_norm |↑ |0.2134|± |0.0321|
|
69 |
+
|cmmlu_arts | 0|none | 0|acc |↑ |0.2375|± |0.0337|
|
70 |
+
| | |none | 0|acc_norm |↑ |0.2375|± |0.0337|
|
71 |
+
|cmmlu_astronomy | 0|none | 0|acc |↑ |0.2424|± |0.0335|
|
72 |
+
| | |none | 0|acc_norm |↑ |0.2424|± |0.0335|
|
73 |
+
|cmmlu_business_ethics | 0|none | 0|acc |↑ |0.2344|± |0.0294|
|
74 |
+
| | |none | 0|acc_norm |↑ |0.2344|± |0.0294|
|
75 |
+
|cmmlu_chinese_civil_service_exam | 0|none | 0|acc |↑ |0.2500|± |0.0343|
|
76 |
+
| | |none | 0|acc_norm |↑ |0.2500|± |0.0343|
|
77 |
+
|cmmlu_chinese_driving_rule | 0|none | 0|acc |↑ |0.2366|± |0.0373|
|
78 |
+
| | |none | 0|acc_norm |↑ |0.2366|± |0.0373|
|
79 |
+
|cmmlu_chinese_food_culture | 0|none | 0|acc |↑ |0.2353|± |0.0365|
|
80 |
+
| | |none | 0|acc_norm |↑ |0.2353|± |0.0365|
|
81 |
+
|cmmlu_chinese_foreign_policy | 0|none | 0|acc |↑ |0.2430|± |0.0417|
|
82 |
+
| | |none | 0|acc_norm |↑ |0.2430|± |0.0417|
|
83 |
+
|cmmlu_chinese_history | 0|none | 0|acc |↑ |0.2508|± |0.0242|
|
84 |
+
| | |none | 0|acc_norm |↑ |0.2508|± |0.0242|
|
85 |
+
|cmmlu_chinese_literature | 0|none | 0|acc |↑ |0.2353|± |0.0298|
|
86 |
+
| | |none | 0|acc_norm |↑ |0.2353|± |0.0298|
|
87 |
+
|cmmlu_chinese_teacher_qualification | 0|none | 0|acc |↑ |0.2235|± |0.0312|
|
88 |
+
| | |none | 0|acc_norm |↑ |0.2235|± |0.0312|
|
89 |
+
|cmmlu_clinical_knowledge | 0|none | 0|acc |↑ |0.2278|± |0.0273|
|
90 |
+
| | |none | 0|acc_norm |↑ |0.2278|± |0.0273|
|
91 |
+
|cmmlu_college_actuarial_science | 0|none | 0|acc |↑ |0.2170|± |0.0402|
|
92 |
+
| | |none | 0|acc_norm |↑ |0.2170|± |0.0402|
|
93 |
+
|cmmlu_college_education | 0|none | 0|acc |↑ |0.3271|± |0.0456|
|
94 |
+
| | |none | 0|acc_norm |↑ |0.3271|± |0.0456|
|
95 |
+
|cmmlu_college_engineering_hydrology | 0|none | 0|acc |↑ |0.2642|± |0.0430|
|
96 |
+
| | |none | 0|acc_norm |↑ |0.2642|± |0.0430|
|
97 |
+
|cmmlu_college_law | 0|none | 0|acc |↑ |0.2222|± |0.0402|
|
98 |
+
| | |none | 0|acc_norm |↑ |0.2222|± |0.0402|
|
99 |
+
|cmmlu_college_mathematics | 0|none | 0|acc |↑ |0.2095|± |0.0399|
|
100 |
+
| | |none | 0|acc_norm |↑ |0.2095|± |0.0399|
|
101 |
+
|cmmlu_college_medical_statistics | 0|none | 0|acc |↑ |0.2547|± |0.0425|
|
102 |
+
| | |none | 0|acc_norm |↑ |0.2547|± |0.0425|
|
103 |
+
|cmmlu_college_medicine | 0|none | 0|acc |↑ |0.2784|± |0.0272|
|
104 |
+
| | |none | 0|acc_norm |↑ |0.2784|± |0.0272|
|
105 |
+
|cmmlu_computer_science | 0|none | 0|acc |↑ |0.2157|± |0.0289|
|
106 |
+
| | |none | 0|acc_norm |↑ |0.2157|± |0.0289|
|
107 |
+
|cmmlu_computer_security | 0|none | 0|acc |↑ |0.2632|± |0.0338|
|
108 |
+
| | |none | 0|acc_norm |↑ |0.2632|± |0.0338|
|
109 |
+
|cmmlu_conceptual_physics | 0|none | 0|acc |↑ |0.2653|± |0.0365|
|
110 |
+
| | |none | 0|acc_norm |↑ |0.2653|± |0.0365|
|
111 |
+
|cmmlu_construction_project_management | 0|none | 0|acc |↑ |0.2446|± |0.0366|
|
112 |
+
| | |none | 0|acc_norm |↑ |0.2446|± |0.0366|
|
113 |
+
|cmmlu_economics | 0|none | 0|acc |↑ |0.2579|± |0.0348|
|
114 |
+
| | |none | 0|acc_norm |↑ |0.2579|± |0.0348|
|
115 |
+
|cmmlu_education | 0|none | 0|acc |↑ |0.2270|± |0.0329|
|
116 |
+
| | |none | 0|acc_norm |↑ |0.2270|± |0.0329|
|
117 |
+
|cmmlu_electrical_engineering | 0|none | 0|acc |↑ |0.2500|± |0.0331|
|
118 |
+
| | |none | 0|acc_norm |↑ |0.2500|± |0.0331|
|
119 |
+
|cmmlu_elementary_chinese | 0|none | 0|acc |↑ |0.2341|± |0.0267|
|
120 |
+
| | |none | 0|acc_norm |↑ |0.2341|± |0.0267|
|
121 |
+
|cmmlu_elementary_commonsense | 0|none | 0|acc |↑ |0.2626|± |0.0314|
|
122 |
+
| | |none | 0|acc_norm |↑ |0.2626|± |0.0314|
|
123 |
+
|cmmlu_elementary_information_and_technology | 0|none | 0|acc |↑ |0.2479|± |0.0280|
|
124 |
+
| | |none | 0|acc_norm |↑ |0.2479|± |0.0280|
|
125 |
+
|cmmlu_elementary_mathematics | 0|none | 0|acc |↑ |0.2957|± |0.0302|
|
126 |
+
| | |none | 0|acc_norm |↑ |0.2957|± |0.0302|
|
127 |
+
|cmmlu_ethnology | 0|none | 0|acc |↑ |0.2963|± |0.0394|
|
128 |
+
| | |none | 0|acc_norm |↑ |0.2963|± |0.0394|
|
129 |
+
|cmmlu_food_science | 0|none | 0|acc |↑ |0.2587|± |0.0368|
|
130 |
+
| | |none | 0|acc_norm |↑ |0.2587|± |0.0368|
|
131 |
+
|cmmlu_genetics | 0|none | 0|acc |↑ |0.2386|± |0.0322|
|
132 |
+
| | |none | 0|acc_norm |↑ |0.2386|± |0.0322|
|
133 |
+
|cmmlu_global_facts | 0|none | 0|acc |↑ |0.2752|± |0.0367|
|
134 |
+
| | |none | 0|acc_norm |↑ |0.2752|± |0.0367|
|
135 |
+
|cmmlu_high_school_biology | 0|none | 0|acc |↑ |0.2249|± |0.0322|
|
136 |
+
| | |none | 0|acc_norm |↑ |0.2249|± |0.0322|
|
137 |
+
|cmmlu_high_school_chemistry | 0|none | 0|acc |↑ |0.2652|± |0.0386|
|
138 |
+
| | |none | 0|acc_norm |↑ |0.2652|± |0.0386|
|
139 |
+
|cmmlu_high_school_geography | 0|none | 0|acc |↑ |0.2288|± |0.0388|
|
140 |
+
| | |none | 0|acc_norm |↑ |0.2288|± |0.0388|
|
141 |
+
|cmmlu_high_school_mathematics | 0|none | 0|acc |↑ |0.2561|± |0.0342|
|
142 |
+
| | |none | 0|acc_norm |↑ |0.2561|± |0.0342|
|
143 |
+
|cmmlu_high_school_physics | 0|none | 0|acc |↑ |0.1636|± |0.0354|
|
144 |
+
| | |none | 0|acc_norm |↑ |0.1636|± |0.0354|
|
145 |
+
|cmmlu_high_school_politics | 0|none | 0|acc |↑ |0.2378|± |0.0357|
|
146 |
+
| | |none | 0|acc_norm |↑ |0.2378|± |0.0357|
|
147 |
+
|cmmlu_human_sexuality | 0|none | 0|acc |↑ |0.2222|± |0.0372|
|
148 |
+
| | |none | 0|acc_norm |↑ |0.2222|± |0.0372|
|
149 |
+
|cmmlu_international_law | 0|none | 0|acc |↑ |0.2432|± |0.0316|
|
150 |
+
| | |none | 0|acc_norm |↑ |0.2432|± |0.0316|
|
151 |
+
|cmmlu_journalism | 0|none | 0|acc |↑ |0.2674|± |0.0338|
|
152 |
+
| | |none | 0|acc_norm |↑ |0.2674|± |0.0338|
|
153 |
+
|cmmlu_jurisprudence | 0|none | 0|acc |↑ |0.2482|± |0.0213|
|
154 |
+
| | |none | 0|acc_norm |↑ |0.2482|± |0.0213|
|
155 |
+
|cmmlu_legal_and_moral_basis | 0|none | 0|acc |↑ |0.2617|± |0.0301|
|
156 |
+
| | |none | 0|acc_norm |↑ |0.2617|± |0.0301|
|
157 |
+
|cmmlu_logical | 0|none | 0|acc |↑ |0.2033|± |0.0364|
|
158 |
+
| | |none | 0|acc_norm |↑ |0.2033|± |0.0364|
|
159 |
+
|cmmlu_machine_learning | 0|none | 0|acc |↑ |0.3279|± |0.0427|
|
160 |
+
| | |none | 0|acc_norm |↑ |0.3279|± |0.0427|
|
161 |
+
|cmmlu_management | 0|none | 0|acc |↑ |0.2190|± |0.0286|
|
162 |
+
| | |none | 0|acc_norm |↑ |0.2190|± |0.0286|
|
163 |
+
|cmmlu_marketing | 0|none | 0|acc |↑ |0.2056|± |0.0302|
|
164 |
+
| | |none | 0|acc_norm |↑ |0.2056|± |0.0302|
|
165 |
+
|cmmlu_marxist_theory | 0|none | 0|acc |↑ |0.2540|± |0.0317|
|
166 |
+
| | |none | 0|acc_norm |↑ |0.2540|± |0.0317|
|
167 |
+
|cmmlu_modern_chinese | 0|none | 0|acc |↑ |0.2241|± |0.0389|
|
168 |
+
| | |none | 0|acc_norm |↑ |0.2241|± |0.0389|
|
169 |
+
|cmmlu_nutrition | 0|none | 0|acc |↑ |0.2483|± |0.0360|
|
170 |
+
| | |none | 0|acc_norm |↑ |0.2483|± |0.0360|
|
171 |
+
|cmmlu_philosophy | 0|none | 0|acc |↑ |0.2571|± |0.0429|
|
172 |
+
| | |none | 0|acc_norm |↑ |0.2571|± |0.0429|
|
173 |
+
|cmmlu_professional_accounting | 0|none | 0|acc |↑ |0.2914|± |0.0344|
|
174 |
+
| | |none | 0|acc_norm |↑ |0.2914|± |0.0344|
|
175 |
+
|cmmlu_professional_law | 0|none | 0|acc |↑ |0.2038|± |0.0278|
|
176 |
+
| | |none | 0|acc_norm |↑ |0.2038|± |0.0278|
|
177 |
+
|cmmlu_professional_medicine | 0|none | 0|acc |↑ |0.2527|± |0.0224|
|
178 |
+
| | |none | 0|acc_norm |↑ |0.2527|± |0.0224|
|
179 |
+
|cmmlu_professional_psychology | 0|none | 0|acc |↑ |0.2586|± |0.0288|
|
180 |
+
| | |none | 0|acc_norm |↑ |0.2586|± |0.0288|
|
181 |
+
|cmmlu_public_relations | 0|none | 0|acc |↑ |0.2644|± |0.0335|
|
182 |
+
| | |none | 0|acc_norm |↑ |0.2644|± |0.0335|
|
183 |
+
|cmmlu_security_study | 0|none | 0|acc |↑ |0.2741|± |0.0385|
|
184 |
+
| | |none | 0|acc_norm |↑ |0.2741|± |0.0385|
|
185 |
+
|cmmlu_sociology | 0|none | 0|acc |↑ |0.2743|± |0.0297|
|
186 |
+
| | |none | 0|acc_norm |↑ |0.2743|± |0.0297|
|
187 |
+
|cmmlu_sports_science | 0|none | 0|acc |↑ |0.2545|± |0.0340|
|
188 |
+
| | |none | 0|acc_norm |↑ |0.2545|± |0.0340|
|
189 |
+
|cmmlu_traditional_chinese_medicine | 0|none | 0|acc |↑ |0.2541|± |0.0321|
|
190 |
+
| | |none | 0|acc_norm |↑ |0.2541|± |0.0321|
|
191 |
+
|cmmlu_virology | 0|none | 0|acc |↑ |0.2485|± |0.0333|
|
192 |
+
| | |none | 0|acc_norm |↑ |0.2485|± |0.0333|
|
193 |
+
|cmmlu_world_history | 0|none | 0|acc |↑ |0.2484|± |0.0342|
|
194 |
+
| | |none | 0|acc_norm |↑ |0.2484|± |0.0342|
|
195 |
+
|cmmlu_world_religions | 0|none | 0|acc |↑ |0.2250|± |0.0331|
|
196 |
+
| | |none | 0|acc_norm |↑ |0.2250|± |0.0331|
|
197 |
+
|gsm8k_cot | 3|flexible-extract| 8|exact_match|↑ |0.0152|± |0.0034|
|
198 |
+
| | |strict-match | 8|exact_match|↑ |0.0061|± |0.0021|
|
199 |
+
|hellaswag | 1|none | 0|acc |↑ |0.2996|± |0.0046|
|
200 |
+
| | |none | 0|acc_norm |↑ |0.3276|± |0.0047|
|
201 |
+
|mmlu |N/A |none | 0|acc |↑ |0.2479|± |0.0036|
|
202 |
+
|mmlu_abstract_algebra | 0|none | 0|acc |↑ |0.2600|± |0.0441|
|
203 |
+
|mmlu_anatomy | 0|none | 0|acc |↑ |0.2741|± |0.0385|
|
204 |
+
|mmlu_astronomy | 0|none | 0|acc |↑ |0.2105|± |0.0332|
|
205 |
+
|mmlu_business_ethics | 0|none | 0|acc |↑ |0.2600|± |0.0441|
|
206 |
+
|mmlu_clinical_knowledge | 0|none | 0|acc |↑ |0.2679|± |0.0273|
|
207 |
+
|mmlu_college_biology | 0|none | 0|acc |↑ |0.2292|± |0.0351|
|
208 |
+
|mmlu_college_chemistry | 0|none | 0|acc |↑ |0.2600|± |0.0441|
|
209 |
+
|mmlu_college_computer_science | 0|none | 0|acc |↑ |0.1800|± |0.0386|
|
210 |
+
|mmlu_college_mathematics | 0|none | 0|acc |↑ |0.2800|± |0.0451|
|
211 |
+
|mmlu_college_medicine | 0|none | 0|acc |↑ |0.2197|± |0.0316|
|
212 |
+
|mmlu_college_physics | 0|none | 0|acc |↑ |0.2353|± |0.0422|
|
213 |
+
|mmlu_computer_security | 0|none | 0|acc |↑ |0.2500|± |0.0435|
|
214 |
+
|mmlu_conceptual_physics | 0|none | 0|acc |↑ |0.3404|± |0.0310|
|
215 |
+
|mmlu_econometrics | 0|none | 0|acc |↑ |0.2632|± |0.0414|
|
216 |
+
|mmlu_electrical_engineering | 0|none | 0|acc |↑ |0.1931|± |0.0329|
|
217 |
+
|mmlu_elementary_mathematics | 0|none | 0|acc |↑ |0.2672|± |0.0228|
|
218 |
+
|mmlu_formal_logic | 0|none | 0|acc |↑ |0.2381|± |0.0381|
|
219 |
+
|mmlu_global_facts | 0|none | 0|acc |↑ |0.2000|± |0.0402|
|
220 |
+
|mmlu_high_school_biology | 0|none | 0|acc |↑ |0.2613|± |0.0250|
|
221 |
+
|mmlu_high_school_chemistry | 0|none | 0|acc |↑ |0.2217|± |0.0292|
|
222 |
+
|mmlu_high_school_computer_science | 0|none | 0|acc |↑ |0.2700|± |0.0446|
|
223 |
+
|mmlu_high_school_european_history | 0|none | 0|acc |↑ |0.2667|± |0.0345|
|
224 |
+
|mmlu_high_school_geography | 0|none | 0|acc |↑ |0.2020|± |0.0286|
|
225 |
+
|mmlu_high_school_government_and_politics | 0|none | 0|acc |↑ |0.2332|± |0.0305|
|
226 |
+
|mmlu_high_school_macroeconomics | 0|none | 0|acc |↑ |0.2385|± |0.0216|
|
227 |
+
|mmlu_high_school_mathematics | 0|none | 0|acc |↑ |0.2556|± |0.0266|
|
228 |
+
|mmlu_high_school_microeconomics | 0|none | 0|acc |↑ |0.2353|± |0.0276|
|
229 |
+
|mmlu_high_school_physics | 0|none | 0|acc |↑ |0.2185|± |0.0337|
|
230 |
+
|mmlu_high_school_psychology | 0|none | 0|acc |↑ |0.2257|± |0.0179|
|
231 |
+
|mmlu_high_school_statistics | 0|none | 0|acc |↑ |0.1667|± |0.0254|
|
232 |
+
|mmlu_high_school_us_history | 0|none | 0|acc |↑ |0.2794|± |0.0315|
|
233 |
+
|mmlu_high_school_world_history | 0|none | 0|acc |↑ |0.2405|± |0.0278|
|
234 |
+
|mmlu_human_aging | 0|none | 0|acc |↑ |0.3632|± |0.0323|
|
235 |
+
|mmlu_human_sexuality | 0|none | 0|acc |↑ |0.2443|± |0.0377|
|
236 |
+
|mmlu_humanities |N/A |none | 0|acc |↑ |0.2497|± |0.0063|
|
237 |
+
|mmlu_international_law | 0|none | 0|acc |↑ |0.2479|± |0.0394|
|
238 |
+
|mmlu_jurisprudence | 0|none | 0|acc |↑ |0.3056|± |0.0445|
|
239 |
+
|mmlu_logical_fallacies | 0|none | 0|acc |↑ |0.2454|± |0.0338|
|
240 |
+
|mmlu_machine_learning | 0|none | 0|acc |↑ |0.2768|± |0.0425|
|
241 |
+
|mmlu_management | 0|none | 0|acc |↑ |0.2621|± |0.0435|
|
242 |
+
|mmlu_marketing | 0|none | 0|acc |↑ |0.2436|± |0.0281|
|
243 |
+
|mmlu_medical_genetics | 0|none | 0|acc |↑ |0.3300|± |0.0473|
|
244 |
+
|mmlu_miscellaneous | 0|none | 0|acc |↑ |0.2452|± |0.0154|
|
245 |
+
|mmlu_moral_disputes | 0|none | 0|acc |↑ |0.2572|± |0.0235|
|
246 |
+
|mmlu_moral_scenarios | 0|none | 0|acc |↑ |0.2391|± |0.0143|
|
247 |
+
|mmlu_nutrition | 0|none | 0|acc |↑ |0.2092|± |0.0233|
|
248 |
+
|mmlu_other |N/A |none | 0|acc |↑ |0.2556|± |0.0078|
|
249 |
+
|mmlu_philosophy | 0|none | 0|acc |↑ |0.2637|± |0.0250|
|
250 |
+
|mmlu_prehistory | 0|none | 0|acc |↑ |0.2531|± |0.0242|
|
251 |
+
|mmlu_professional_accounting | 0|none | 0|acc |↑ |0.2766|± |0.0267|
|
252 |
+
|mmlu_professional_law | 0|none | 0|acc |↑ |0.2438|± |0.0110|
|
253 |
+
|mmlu_professional_medicine | 0|none | 0|acc |↑ |0.2022|± |0.0244|
|
254 |
+
|mmlu_professional_psychology | 0|none | 0|acc |↑ |0.2598|± |0.0177|
|
255 |
+
|mmlu_public_relations | 0|none | 0|acc |↑ |0.2818|± |0.0431|
|
256 |
+
|mmlu_security_studies | 0|none | 0|acc |↑ |0.1714|± |0.0241|
|
257 |
+
|mmlu_social_sciences |N/A |none | 0|acc |↑ |0.2379|± |0.0077|
|
258 |
+
|mmlu_sociology | 0|none | 0|acc |↑ |0.2836|± |0.0319|
|
259 |
+
|mmlu_stem |N/A |none | 0|acc |↑ |0.2474|± |0.0077|
|
260 |
+
|mmlu_us_foreign_policy | 0|none | 0|acc |↑ |0.2400|± |0.0429|
|
261 |
+
|mmlu_virology | 0|none | 0|acc |↑ |0.3133|± |0.0361|
|
262 |
+
|mmlu_world_religions | 0|none | 0|acc |↑ |0.2515|± |0.0333|
|
263 |
+
|piqa | 1|none | 0|acc |↑ |0.6279|± |0.0113|
|
264 |
+
| | |none | 0|acc_norm |↑ |0.6289|± |0.0113|
|
265 |
+
|winogrande | 1|none | 0|acc |↑ |0.4862|± |0.0140|
|
266 |
+
|
267 |
+
| Groups |Version|Filter|n-shot| Metric | |Value | |Stderr|
|
268 |
+
|--------------------|-------|------|-----:|--------|---|-----:|---|-----:|
|
269 |
+
|ceval-valid |N/A |none | 0|acc |↑ |0.2623|± |0.0120|
|
270 |
+
|cmmlu |N/A |none | 0|acc |↑ |0.2475|± |0.0040|
|
271 |
+
| | |none | 0|acc_norm|↑ |0.2475|± |0.0040|
|
272 |
+
|mmlu |N/A |none | 0|acc |↑ |0.2479|± |0.0036|
|
273 |
+
|mmlu_humanities |N/A |none | 0|acc |↑ |0.2497|± |0.0063|
|
274 |
+
|mmlu_other |N/A |none | 0|acc |↑ |0.2556|± |0.0078|
|
275 |
+
|mmlu_social_sciences|N/A |none | 0|acc |↑ |0.2379|± |0.0077|
|
276 |
+
|mmlu_stem |N/A |none | 0|acc |↑ |0.2474|± |0.0077|
|
277 |
+
|
checkpoint-4500/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.45.2"
|
6 |
+
}
|
checkpoint-4500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4500
|
checkpoint-4500/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e57461eb6f9083c0af1438e2952e05fb9eb20f2b6ffc50cc0b827b25158f08dc
|
3 |
+
size 748256328
|
checkpoint-4500/rng_state_0.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_1.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_2.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_3.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_4.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_5.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_6.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/rng_state_7.pth
ADDED
Binary file (15.9 kB). View file
|
|
checkpoint-4500/scheduler.pt
ADDED
Binary file (1.06 kB). View file
|
|
checkpoint-4500/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-4500/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-4500/tokenizer.model
ADDED
Binary file (493 kB). View file
|
|
checkpoint-4500/tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": true,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": "</s>",
|
39 |
+
"padding_side": "right",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"spaces_between_special_tokens": false,
|
42 |
+
"split_special_tokens": false,
|
43 |
+
"tokenizer_class": "LlamaTokenizer",
|
44 |
+
"unk_token": "<unk>",
|
45 |
+
"use_default_system_prompt": false
|
46 |
+
}
|
checkpoint-4500/trainer_state.json
ADDED
@@ -0,0 +1,3215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.6877706435717483,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 4500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005972823652381664,
|
13 |
+
"grad_norm": 0.5743309259414673,
|
14 |
+
"learning_rate": 1.5904572564612327e-06,
|
15 |
+
"loss": 2.7537,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.011945647304763328,
|
20 |
+
"grad_norm": 0.5460094809532166,
|
21 |
+
"learning_rate": 3.1809145129224655e-06,
|
22 |
+
"loss": 2.7612,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.01791847095714499,
|
27 |
+
"grad_norm": 0.5363145470619202,
|
28 |
+
"learning_rate": 4.7713717693836985e-06,
|
29 |
+
"loss": 2.7609,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.023891294609526655,
|
34 |
+
"grad_norm": 0.5279455184936523,
|
35 |
+
"learning_rate": 6.361829025844931e-06,
|
36 |
+
"loss": 2.7607,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.029864118261908316,
|
41 |
+
"grad_norm": 0.5061234831809998,
|
42 |
+
"learning_rate": 7.952286282306164e-06,
|
43 |
+
"loss": 2.784,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03583694191428998,
|
48 |
+
"grad_norm": 0.476898729801178,
|
49 |
+
"learning_rate": 9.542743538767397e-06,
|
50 |
+
"loss": 2.762,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.041809765566671646,
|
55 |
+
"grad_norm": 0.4454072415828705,
|
56 |
+
"learning_rate": 1.113320079522863e-05,
|
57 |
+
"loss": 2.7716,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.04778258921905331,
|
62 |
+
"grad_norm": 3.1541287899017334,
|
63 |
+
"learning_rate": 1.2723658051689862e-05,
|
64 |
+
"loss": 2.8849,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.05375541287143497,
|
69 |
+
"grad_norm": 0.19107532501220703,
|
70 |
+
"learning_rate": 1.4314115308151095e-05,
|
71 |
+
"loss": 3.1147,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.05972823652381663,
|
76 |
+
"grad_norm": 0.13281038403511047,
|
77 |
+
"learning_rate": 1.590457256461233e-05,
|
78 |
+
"loss": 2.5574,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.0657010601761983,
|
83 |
+
"grad_norm": 0.08191326260566711,
|
84 |
+
"learning_rate": 1.749502982107356e-05,
|
85 |
+
"loss": 2.4446,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07167388382857996,
|
90 |
+
"grad_norm": 0.08300579339265823,
|
91 |
+
"learning_rate": 1.9085487077534794e-05,
|
92 |
+
"loss": 2.3524,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.07764670748096163,
|
97 |
+
"grad_norm": 0.0590679906308651,
|
98 |
+
"learning_rate": 2.0675944333996028e-05,
|
99 |
+
"loss": 2.2819,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.08361953113334329,
|
104 |
+
"grad_norm": 0.052923623472452164,
|
105 |
+
"learning_rate": 2.226640159045726e-05,
|
106 |
+
"loss": 2.2261,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.08959235478572496,
|
111 |
+
"grad_norm": 0.05208205804228783,
|
112 |
+
"learning_rate": 2.385685884691849e-05,
|
113 |
+
"loss": 2.1889,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.09556517843810662,
|
118 |
+
"grad_norm": 0.0485885925590992,
|
119 |
+
"learning_rate": 2.5447316103379724e-05,
|
120 |
+
"loss": 2.1694,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.10153800209048827,
|
125 |
+
"grad_norm": 0.04901551082730293,
|
126 |
+
"learning_rate": 2.7037773359840955e-05,
|
127 |
+
"loss": 2.1272,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.10751082574286994,
|
132 |
+
"grad_norm": 0.04524153470993042,
|
133 |
+
"learning_rate": 2.862823061630219e-05,
|
134 |
+
"loss": 2.1085,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.1134836493952516,
|
139 |
+
"grad_norm": 0.04201298579573631,
|
140 |
+
"learning_rate": 3.021868787276342e-05,
|
141 |
+
"loss": 2.0902,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.11945647304763327,
|
146 |
+
"grad_norm": 0.053612083196640015,
|
147 |
+
"learning_rate": 3.180914512922466e-05,
|
148 |
+
"loss": 2.0855,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.12542929670001493,
|
153 |
+
"grad_norm": 0.04812688007950783,
|
154 |
+
"learning_rate": 3.3399602385685885e-05,
|
155 |
+
"loss": 2.0469,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.1314021203523966,
|
160 |
+
"grad_norm": 0.0483262836933136,
|
161 |
+
"learning_rate": 3.499005964214712e-05,
|
162 |
+
"loss": 2.0264,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.13737494400477826,
|
167 |
+
"grad_norm": 0.05456310138106346,
|
168 |
+
"learning_rate": 3.6580516898608353e-05,
|
169 |
+
"loss": 2.0201,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14334776765715992,
|
174 |
+
"grad_norm": 0.06978671252727509,
|
175 |
+
"learning_rate": 3.817097415506959e-05,
|
176 |
+
"loss": 1.9967,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.1493205913095416,
|
181 |
+
"grad_norm": 0.049219317734241486,
|
182 |
+
"learning_rate": 3.976143141153082e-05,
|
183 |
+
"loss": 1.9909,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.15529341496192325,
|
188 |
+
"grad_norm": 0.04814588651061058,
|
189 |
+
"learning_rate": 4.1351888667992056e-05,
|
190 |
+
"loss": 1.9793,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.16126623861430492,
|
195 |
+
"grad_norm": 0.06128086522221565,
|
196 |
+
"learning_rate": 4.2942345924453284e-05,
|
197 |
+
"loss": 1.9703,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.16723906226668658,
|
202 |
+
"grad_norm": 0.06803273409605026,
|
203 |
+
"learning_rate": 4.453280318091452e-05,
|
204 |
+
"loss": 1.9484,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.17321188591906825,
|
209 |
+
"grad_norm": 0.06598497182130814,
|
210 |
+
"learning_rate": 4.612326043737575e-05,
|
211 |
+
"loss": 1.9251,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.1791847095714499,
|
216 |
+
"grad_norm": 0.05581754818558693,
|
217 |
+
"learning_rate": 4.771371769383698e-05,
|
218 |
+
"loss": 1.9211,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.18515753322383158,
|
223 |
+
"grad_norm": 0.06264442205429077,
|
224 |
+
"learning_rate": 4.9304174950298214e-05,
|
225 |
+
"loss": 1.9047,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.19113035687621324,
|
230 |
+
"grad_norm": 0.05809122323989868,
|
231 |
+
"learning_rate": 5.089463220675945e-05,
|
232 |
+
"loss": 1.8948,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.1971031805285949,
|
237 |
+
"grad_norm": 0.05478562042117119,
|
238 |
+
"learning_rate": 5.248508946322068e-05,
|
239 |
+
"loss": 1.8924,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.20307600418097654,
|
244 |
+
"grad_norm": 0.060149796307086945,
|
245 |
+
"learning_rate": 5.407554671968191e-05,
|
246 |
+
"loss": 1.8776,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2090488278333582,
|
251 |
+
"grad_norm": 0.06282585859298706,
|
252 |
+
"learning_rate": 5.5666003976143144e-05,
|
253 |
+
"loss": 1.8752,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.21502165148573987,
|
258 |
+
"grad_norm": 0.06441989541053772,
|
259 |
+
"learning_rate": 5.725646123260438e-05,
|
260 |
+
"loss": 1.8632,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.22099447513812154,
|
265 |
+
"grad_norm": 0.05681062117218971,
|
266 |
+
"learning_rate": 5.8846918489065606e-05,
|
267 |
+
"loss": 1.8475,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.2269672987905032,
|
272 |
+
"grad_norm": 0.05155131593346596,
|
273 |
+
"learning_rate": 6.043737574552684e-05,
|
274 |
+
"loss": 1.8431,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.23294012244288487,
|
279 |
+
"grad_norm": 0.05347074940800667,
|
280 |
+
"learning_rate": 6.202783300198807e-05,
|
281 |
+
"loss": 1.8416,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.23891294609526653,
|
286 |
+
"grad_norm": 0.06694310158491135,
|
287 |
+
"learning_rate": 6.361829025844931e-05,
|
288 |
+
"loss": 1.8344,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.2448857697476482,
|
293 |
+
"grad_norm": 0.06079185754060745,
|
294 |
+
"learning_rate": 6.520874751491054e-05,
|
295 |
+
"loss": 1.8297,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.25085859340002986,
|
300 |
+
"grad_norm": 0.05415233224630356,
|
301 |
+
"learning_rate": 6.679920477137177e-05,
|
302 |
+
"loss": 1.82,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.2568314170524115,
|
307 |
+
"grad_norm": 0.0645110234618187,
|
308 |
+
"learning_rate": 6.838966202783301e-05,
|
309 |
+
"loss": 1.8137,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.2628042407047932,
|
314 |
+
"grad_norm": 0.06045007333159447,
|
315 |
+
"learning_rate": 6.998011928429424e-05,
|
316 |
+
"loss": 1.8048,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.26877706435717486,
|
321 |
+
"grad_norm": 0.05600131303071976,
|
322 |
+
"learning_rate": 7.157057654075547e-05,
|
323 |
+
"loss": 1.7854,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.2747498880095565,
|
328 |
+
"grad_norm": 0.06498062610626221,
|
329 |
+
"learning_rate": 7.316103379721671e-05,
|
330 |
+
"loss": 1.798,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.2807227116619382,
|
335 |
+
"grad_norm": 0.053577929735183716,
|
336 |
+
"learning_rate": 7.475149105367795e-05,
|
337 |
+
"loss": 1.7883,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.28669553531431985,
|
342 |
+
"grad_norm": 0.09097382426261902,
|
343 |
+
"learning_rate": 7.634194831013918e-05,
|
344 |
+
"loss": 1.78,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.2926683589667015,
|
349 |
+
"grad_norm": 0.057212598621845245,
|
350 |
+
"learning_rate": 7.79324055666004e-05,
|
351 |
+
"loss": 1.7705,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.2986411826190832,
|
356 |
+
"grad_norm": 0.055311623960733414,
|
357 |
+
"learning_rate": 7.952286282306164e-05,
|
358 |
+
"loss": 1.7739,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.30461400627146484,
|
363 |
+
"grad_norm": 0.07679615169763565,
|
364 |
+
"learning_rate": 7.999952636882403e-05,
|
365 |
+
"loss": 1.7705,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.3105868299238465,
|
370 |
+
"grad_norm": 0.10281822085380554,
|
371 |
+
"learning_rate": 7.999720656965739e-05,
|
372 |
+
"loss": 1.7639,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.3165596535762282,
|
377 |
+
"grad_norm": 0.07636060565710068,
|
378 |
+
"learning_rate": 7.999295372099362e-05,
|
379 |
+
"loss": 1.7539,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.32253247722860984,
|
384 |
+
"grad_norm": 0.057714689522981644,
|
385 |
+
"learning_rate": 7.998676802837124e-05,
|
386 |
+
"loss": 1.7541,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.3285053008809915,
|
391 |
+
"grad_norm": 0.06505981832742691,
|
392 |
+
"learning_rate": 7.997864979074237e-05,
|
393 |
+
"loss": 1.7487,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.33447812453337317,
|
398 |
+
"grad_norm": 0.05842842161655426,
|
399 |
+
"learning_rate": 7.996859940045832e-05,
|
400 |
+
"loss": 1.739,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.34045094818575483,
|
405 |
+
"grad_norm": 0.051559966057538986,
|
406 |
+
"learning_rate": 7.995661734325054e-05,
|
407 |
+
"loss": 1.7443,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.3464237718381365,
|
412 |
+
"grad_norm": 0.20853149890899658,
|
413 |
+
"learning_rate": 7.994270419820721e-05,
|
414 |
+
"loss": 1.7719,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.35239659549051816,
|
419 |
+
"grad_norm": 0.09151974320411682,
|
420 |
+
"learning_rate": 7.992686063774525e-05,
|
421 |
+
"loss": 1.7817,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.3583694191428998,
|
426 |
+
"grad_norm": 0.05926055088639259,
|
427 |
+
"learning_rate": 7.99090874275778e-05,
|
428 |
+
"loss": 1.7469,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.3643422427952815,
|
433 |
+
"grad_norm": 0.044228848069906235,
|
434 |
+
"learning_rate": 7.988938542667721e-05,
|
435 |
+
"loss": 1.7393,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.37031506644766315,
|
440 |
+
"grad_norm": 0.0427553653717041,
|
441 |
+
"learning_rate": 7.986775558723355e-05,
|
442 |
+
"loss": 1.7307,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.3762878901000448,
|
447 |
+
"grad_norm": 0.0548509880900383,
|
448 |
+
"learning_rate": 7.984419895460858e-05,
|
449 |
+
"loss": 1.7205,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.3822607137524265,
|
454 |
+
"grad_norm": 0.057041749358177185,
|
455 |
+
"learning_rate": 7.981871666728525e-05,
|
456 |
+
"loss": 1.7225,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.38823353740480815,
|
461 |
+
"grad_norm": 0.056601762771606445,
|
462 |
+
"learning_rate": 7.979130995681263e-05,
|
463 |
+
"loss": 1.7088,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.3942063610571898,
|
468 |
+
"grad_norm": 0.06844093650579453,
|
469 |
+
"learning_rate": 7.976198014774637e-05,
|
470 |
+
"loss": 1.7073,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.4001791847095714,
|
475 |
+
"grad_norm": 0.0546780526638031,
|
476 |
+
"learning_rate": 7.973072865758483e-05,
|
477 |
+
"loss": 1.7121,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.4061520083619531,
|
482 |
+
"grad_norm": 0.04654558375477791,
|
483 |
+
"learning_rate": 7.969755699670041e-05,
|
484 |
+
"loss": 1.6951,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.41212483201433475,
|
489 |
+
"grad_norm": 0.06478898227214813,
|
490 |
+
"learning_rate": 7.966246676826661e-05,
|
491 |
+
"loss": 1.7055,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.4180976556667164,
|
496 |
+
"grad_norm": 0.06878198683261871,
|
497 |
+
"learning_rate": 7.962545966818062e-05,
|
498 |
+
"loss": 1.6987,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.4240704793190981,
|
503 |
+
"grad_norm": 0.05675249919295311,
|
504 |
+
"learning_rate": 7.95865374849812e-05,
|
505 |
+
"loss": 1.6998,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.43004330297147975,
|
510 |
+
"grad_norm": 0.05516457185149193,
|
511 |
+
"learning_rate": 7.954570209976239e-05,
|
512 |
+
"loss": 1.6852,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.4360161266238614,
|
517 |
+
"grad_norm": 0.05688585340976715,
|
518 |
+
"learning_rate": 7.950295548608256e-05,
|
519 |
+
"loss": 1.6901,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.4419889502762431,
|
524 |
+
"grad_norm": 0.07187242805957794,
|
525 |
+
"learning_rate": 7.945829970986898e-05,
|
526 |
+
"loss": 1.6894,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.44796177392862474,
|
531 |
+
"grad_norm": 0.0548662506043911,
|
532 |
+
"learning_rate": 7.941173692931801e-05,
|
533 |
+
"loss": 1.6819,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.4539345975810064,
|
538 |
+
"grad_norm": 0.0926741436123848,
|
539 |
+
"learning_rate": 7.93632693947908e-05,
|
540 |
+
"loss": 1.6797,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.45990742123338807,
|
545 |
+
"grad_norm": 0.04921697825193405,
|
546 |
+
"learning_rate": 7.931289944870448e-05,
|
547 |
+
"loss": 1.6629,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.46588024488576973,
|
552 |
+
"grad_norm": 0.07487112283706665,
|
553 |
+
"learning_rate": 7.92606295254191e-05,
|
554 |
+
"loss": 1.6737,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.4718530685381514,
|
559 |
+
"grad_norm": 0.07180643826723099,
|
560 |
+
"learning_rate": 7.920646215111973e-05,
|
561 |
+
"loss": 1.6716,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.47782589219053306,
|
566 |
+
"grad_norm": 0.050522662699222565,
|
567 |
+
"learning_rate": 7.915039994369462e-05,
|
568 |
+
"loss": 1.6597,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.48379871584291473,
|
573 |
+
"grad_norm": 0.0628654807806015,
|
574 |
+
"learning_rate": 7.909244561260855e-05,
|
575 |
+
"loss": 1.6722,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.4897715394952964,
|
580 |
+
"grad_norm": 0.07348821312189102,
|
581 |
+
"learning_rate": 7.903260195877184e-05,
|
582 |
+
"loss": 1.6718,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.49574436314767806,
|
587 |
+
"grad_norm": 0.0689951702952385,
|
588 |
+
"learning_rate": 7.897087187440512e-05,
|
589 |
+
"loss": 1.6658,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.5017171868000597,
|
594 |
+
"grad_norm": 0.05663711205124855,
|
595 |
+
"learning_rate": 7.890725834289946e-05,
|
596 |
+
"loss": 1.6636,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.5076900104524414,
|
601 |
+
"grad_norm": 0.050597622990608215,
|
602 |
+
"learning_rate": 7.884176443867219e-05,
|
603 |
+
"loss": 1.6648,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.513662834104823,
|
608 |
+
"grad_norm": 0.05792626738548279,
|
609 |
+
"learning_rate": 7.87743933270183e-05,
|
610 |
+
"loss": 1.6582,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.5196356577572048,
|
615 |
+
"grad_norm": 0.05193015933036804,
|
616 |
+
"learning_rate": 7.870514826395755e-05,
|
617 |
+
"loss": 1.664,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.5256084814095864,
|
622 |
+
"grad_norm": 0.05836218595504761,
|
623 |
+
"learning_rate": 7.863403259607698e-05,
|
624 |
+
"loss": 1.6535,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.531581305061968,
|
629 |
+
"grad_norm": 0.08420410752296448,
|
630 |
+
"learning_rate": 7.856104976036928e-05,
|
631 |
+
"loss": 1.6463,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.5375541287143497,
|
636 |
+
"grad_norm": 0.06460799276828766,
|
637 |
+
"learning_rate": 7.848620328406663e-05,
|
638 |
+
"loss": 1.6615,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.5435269523667313,
|
643 |
+
"grad_norm": 0.08191855251789093,
|
644 |
+
"learning_rate": 7.840949678447022e-05,
|
645 |
+
"loss": 1.6529,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.549499776019113,
|
650 |
+
"grad_norm": 0.04835124313831329,
|
651 |
+
"learning_rate": 7.833093396877546e-05,
|
652 |
+
"loss": 1.6508,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.5554725996714946,
|
657 |
+
"grad_norm": 0.047752317041158676,
|
658 |
+
"learning_rate": 7.82505186338928e-05,
|
659 |
+
"loss": 1.6484,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.5614454233238764,
|
664 |
+
"grad_norm": 0.054417744278907776,
|
665 |
+
"learning_rate": 7.816825466626419e-05,
|
666 |
+
"loss": 1.6443,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.567418246976258,
|
671 |
+
"grad_norm": 0.0538078136742115,
|
672 |
+
"learning_rate": 7.808414604167537e-05,
|
673 |
+
"loss": 1.6422,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.5733910706286397,
|
678 |
+
"grad_norm": 0.04438367858529091,
|
679 |
+
"learning_rate": 7.799819682506353e-05,
|
680 |
+
"loss": 1.6443,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.5793638942810213,
|
685 |
+
"grad_norm": 0.056033167988061905,
|
686 |
+
"learning_rate": 7.791041117032102e-05,
|
687 |
+
"loss": 1.6428,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.585336717933403,
|
692 |
+
"grad_norm": 0.07095460593700409,
|
693 |
+
"learning_rate": 7.782079332009454e-05,
|
694 |
+
"loss": 1.6425,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.5913095415857846,
|
699 |
+
"grad_norm": 0.05874691903591156,
|
700 |
+
"learning_rate": 7.772934760558005e-05,
|
701 |
+
"loss": 1.6346,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.5972823652381664,
|
706 |
+
"grad_norm": 0.0521966814994812,
|
707 |
+
"learning_rate": 7.76360784463135e-05,
|
708 |
+
"loss": 1.6359,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.5972823652381664,
|
713 |
+
"eval_loss": 1.634853482246399,
|
714 |
+
"eval_runtime": 28.9256,
|
715 |
+
"eval_samples_per_second": 1197.311,
|
716 |
+
"eval_steps_per_second": 9.369,
|
717 |
+
"step": 1000
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.603255188890548,
|
721 |
+
"grad_norm": 0.052664998918771744,
|
722 |
+
"learning_rate": 7.754099034995727e-05,
|
723 |
+
"loss": 1.6383,
|
724 |
+
"step": 1010
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.6092280125429297,
|
728 |
+
"grad_norm": 0.08000710606575012,
|
729 |
+
"learning_rate": 7.744408791208214e-05,
|
730 |
+
"loss": 1.639,
|
731 |
+
"step": 1020
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.6152008361953113,
|
735 |
+
"grad_norm": 0.05873206630349159,
|
736 |
+
"learning_rate": 7.734537581594545e-05,
|
737 |
+
"loss": 1.632,
|
738 |
+
"step": 1030
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.621173659847693,
|
742 |
+
"grad_norm": 0.06116827204823494,
|
743 |
+
"learning_rate": 7.724485883226454e-05,
|
744 |
+
"loss": 1.6351,
|
745 |
+
"step": 1040
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.6271464835000746,
|
749 |
+
"grad_norm": 0.057659681886434555,
|
750 |
+
"learning_rate": 7.714254181898627e-05,
|
751 |
+
"loss": 1.637,
|
752 |
+
"step": 1050
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.6331193071524563,
|
756 |
+
"grad_norm": 0.05905848369002342,
|
757 |
+
"learning_rate": 7.703842972105228e-05,
|
758 |
+
"loss": 1.626,
|
759 |
+
"step": 1060
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.639092130804838,
|
763 |
+
"grad_norm": 0.0539986751973629,
|
764 |
+
"learning_rate": 7.693252757015991e-05,
|
765 |
+
"loss": 1.6278,
|
766 |
+
"step": 1070
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.6450649544572197,
|
770 |
+
"grad_norm": 0.062365371733903885,
|
771 |
+
"learning_rate": 7.682484048451908e-05,
|
772 |
+
"loss": 1.6187,
|
773 |
+
"step": 1080
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.6510377781096013,
|
777 |
+
"grad_norm": 0.0486634224653244,
|
778 |
+
"learning_rate": 7.671537366860494e-05,
|
779 |
+
"loss": 1.6223,
|
780 |
+
"step": 1090
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.657010601761983,
|
784 |
+
"grad_norm": 0.04700983688235283,
|
785 |
+
"learning_rate": 7.660413241290626e-05,
|
786 |
+
"loss": 1.6237,
|
787 |
+
"step": 1100
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.6629834254143646,
|
791 |
+
"grad_norm": 0.06423746794462204,
|
792 |
+
"learning_rate": 7.649112209366985e-05,
|
793 |
+
"loss": 1.6349,
|
794 |
+
"step": 1110
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.6689562490667463,
|
798 |
+
"grad_norm": 0.05183717608451843,
|
799 |
+
"learning_rate": 7.637634817264064e-05,
|
800 |
+
"loss": 1.6203,
|
801 |
+
"step": 1120
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.6749290727191279,
|
805 |
+
"grad_norm": 0.05448286980390549,
|
806 |
+
"learning_rate": 7.625981619679777e-05,
|
807 |
+
"loss": 1.6159,
|
808 |
+
"step": 1130
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.6809018963715097,
|
812 |
+
"grad_norm": 0.06012860685586929,
|
813 |
+
"learning_rate": 7.61415317980865e-05,
|
814 |
+
"loss": 1.6106,
|
815 |
+
"step": 1140
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.6868747200238913,
|
819 |
+
"grad_norm": 0.0491897277534008,
|
820 |
+
"learning_rate": 7.602150069314598e-05,
|
821 |
+
"loss": 1.613,
|
822 |
+
"step": 1150
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.692847543676273,
|
826 |
+
"grad_norm": 0.05050448700785637,
|
827 |
+
"learning_rate": 7.589972868303301e-05,
|
828 |
+
"loss": 1.6158,
|
829 |
+
"step": 1160
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.6988203673286546,
|
833 |
+
"grad_norm": 0.05027921870350838,
|
834 |
+
"learning_rate": 7.577622165294165e-05,
|
835 |
+
"loss": 1.6166,
|
836 |
+
"step": 1170
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.7047931909810363,
|
840 |
+
"grad_norm": 0.061239466071128845,
|
841 |
+
"learning_rate": 7.565098557191882e-05,
|
842 |
+
"loss": 1.607,
|
843 |
+
"step": 1180
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.7107660146334179,
|
847 |
+
"grad_norm": 0.04995877295732498,
|
848 |
+
"learning_rate": 7.552402649257578e-05,
|
849 |
+
"loss": 1.6152,
|
850 |
+
"step": 1190
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.7167388382857997,
|
854 |
+
"grad_norm": 0.04830503091216087,
|
855 |
+
"learning_rate": 7.539535055079569e-05,
|
856 |
+
"loss": 1.613,
|
857 |
+
"step": 1200
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.7227116619381813,
|
861 |
+
"grad_norm": 0.05787483602762222,
|
862 |
+
"learning_rate": 7.526496396543691e-05,
|
863 |
+
"loss": 1.614,
|
864 |
+
"step": 1210
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.728684485590563,
|
868 |
+
"grad_norm": 0.07437578588724136,
|
869 |
+
"learning_rate": 7.513287303803263e-05,
|
870 |
+
"loss": 1.6127,
|
871 |
+
"step": 1220
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.7346573092429446,
|
875 |
+
"grad_norm": 0.06587845832109451,
|
876 |
+
"learning_rate": 7.499908415248616e-05,
|
877 |
+
"loss": 1.6015,
|
878 |
+
"step": 1230
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.7406301328953263,
|
882 |
+
"grad_norm": 0.0692521184682846,
|
883 |
+
"learning_rate": 7.486360377476255e-05,
|
884 |
+
"loss": 1.6026,
|
885 |
+
"step": 1240
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.7466029565477079,
|
889 |
+
"grad_norm": 0.061289019882678986,
|
890 |
+
"learning_rate": 7.472643845257592e-05,
|
891 |
+
"loss": 1.6108,
|
892 |
+
"step": 1250
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.7525757802000896,
|
896 |
+
"grad_norm": 0.056076616048812866,
|
897 |
+
"learning_rate": 7.458759481507318e-05,
|
898 |
+
"loss": 1.6018,
|
899 |
+
"step": 1260
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.7585486038524712,
|
903 |
+
"grad_norm": 0.06620051711797714,
|
904 |
+
"learning_rate": 7.444707957251354e-05,
|
905 |
+
"loss": 1.6048,
|
906 |
+
"step": 1270
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.764521427504853,
|
910 |
+
"grad_norm": 0.05557152256369591,
|
911 |
+
"learning_rate": 7.430489951594422e-05,
|
912 |
+
"loss": 1.6091,
|
913 |
+
"step": 1280
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.7704942511572346,
|
917 |
+
"grad_norm": 0.04953812435269356,
|
918 |
+
"learning_rate": 7.416106151687224e-05,
|
919 |
+
"loss": 1.6026,
|
920 |
+
"step": 1290
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.7764670748096163,
|
924 |
+
"grad_norm": 0.042427971959114075,
|
925 |
+
"learning_rate": 7.40155725269324e-05,
|
926 |
+
"loss": 1.5983,
|
927 |
+
"step": 1300
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.7824398984619979,
|
931 |
+
"grad_norm": 0.05906856432557106,
|
932 |
+
"learning_rate": 7.386843957755123e-05,
|
933 |
+
"loss": 1.6008,
|
934 |
+
"step": 1310
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.7884127221143796,
|
938 |
+
"grad_norm": 0.04983474314212799,
|
939 |
+
"learning_rate": 7.371966977960713e-05,
|
940 |
+
"loss": 1.5973,
|
941 |
+
"step": 1320
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.7943855457667612,
|
945 |
+
"grad_norm": 0.0590224526822567,
|
946 |
+
"learning_rate": 7.356927032308682e-05,
|
947 |
+
"loss": 1.6011,
|
948 |
+
"step": 1330
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.8003583694191428,
|
952 |
+
"grad_norm": 0.057693641632795334,
|
953 |
+
"learning_rate": 7.341724847673775e-05,
|
954 |
+
"loss": 1.5942,
|
955 |
+
"step": 1340
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.8063311930715246,
|
959 |
+
"grad_norm": 0.040723856538534164,
|
960 |
+
"learning_rate": 7.326361158771688e-05,
|
961 |
+
"loss": 1.6011,
|
962 |
+
"step": 1350
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.8123040167239062,
|
966 |
+
"grad_norm": 0.05768086016178131,
|
967 |
+
"learning_rate": 7.31083670812355e-05,
|
968 |
+
"loss": 1.5999,
|
969 |
+
"step": 1360
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.8182768403762879,
|
973 |
+
"grad_norm": 0.06345749646425247,
|
974 |
+
"learning_rate": 7.29515224602005e-05,
|
975 |
+
"loss": 1.5985,
|
976 |
+
"step": 1370
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.8242496640286695,
|
980 |
+
"grad_norm": 0.06176001578569412,
|
981 |
+
"learning_rate": 7.27930853048516e-05,
|
982 |
+
"loss": 1.5971,
|
983 |
+
"step": 1380
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.8302224876810512,
|
987 |
+
"grad_norm": 0.05247745290398598,
|
988 |
+
"learning_rate": 7.263306327239516e-05,
|
989 |
+
"loss": 1.5958,
|
990 |
+
"step": 1390
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.8361953113334328,
|
994 |
+
"grad_norm": 0.05218351632356644,
|
995 |
+
"learning_rate": 7.247146409663401e-05,
|
996 |
+
"loss": 1.5981,
|
997 |
+
"step": 1400
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.8421681349858146,
|
1001 |
+
"grad_norm": 0.0629679337143898,
|
1002 |
+
"learning_rate": 7.23082955875937e-05,
|
1003 |
+
"loss": 1.5949,
|
1004 |
+
"step": 1410
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.8481409586381962,
|
1008 |
+
"grad_norm": 0.061205677688121796,
|
1009 |
+
"learning_rate": 7.214356563114505e-05,
|
1010 |
+
"loss": 1.5957,
|
1011 |
+
"step": 1420
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.8541137822905779,
|
1015 |
+
"grad_norm": 0.06122026965022087,
|
1016 |
+
"learning_rate": 7.197728218862306e-05,
|
1017 |
+
"loss": 1.5911,
|
1018 |
+
"step": 1430
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.8600866059429595,
|
1022 |
+
"grad_norm": 0.054293327033519745,
|
1023 |
+
"learning_rate": 7.180945329644204e-05,
|
1024 |
+
"loss": 1.5885,
|
1025 |
+
"step": 1440
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.8660594295953412,
|
1029 |
+
"grad_norm": 0.04569542035460472,
|
1030 |
+
"learning_rate": 7.164008706570736e-05,
|
1031 |
+
"loss": 1.5893,
|
1032 |
+
"step": 1450
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.8720322532477228,
|
1036 |
+
"grad_norm": 0.04415179416537285,
|
1037 |
+
"learning_rate": 7.146919168182333e-05,
|
1038 |
+
"loss": 1.5951,
|
1039 |
+
"step": 1460
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.8780050769001045,
|
1043 |
+
"grad_norm": 0.052418701350688934,
|
1044 |
+
"learning_rate": 7.129677540409762e-05,
|
1045 |
+
"loss": 1.5999,
|
1046 |
+
"step": 1470
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.8839779005524862,
|
1050 |
+
"grad_norm": 0.053583066910505295,
|
1051 |
+
"learning_rate": 7.112284656534215e-05,
|
1052 |
+
"loss": 1.5979,
|
1053 |
+
"step": 1480
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.8899507242048679,
|
1057 |
+
"grad_norm": 0.06733547151088715,
|
1058 |
+
"learning_rate": 7.09474135714703e-05,
|
1059 |
+
"loss": 1.5871,
|
1060 |
+
"step": 1490
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.8959235478572495,
|
1064 |
+
"grad_norm": 0.05455510690808296,
|
1065 |
+
"learning_rate": 7.07704849010907e-05,
|
1066 |
+
"loss": 1.5912,
|
1067 |
+
"step": 1500
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.9018963715096312,
|
1071 |
+
"grad_norm": 0.05950945243239403,
|
1072 |
+
"learning_rate": 7.059206910509745e-05,
|
1073 |
+
"loss": 1.5958,
|
1074 |
+
"step": 1510
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.9078691951620128,
|
1078 |
+
"grad_norm": 0.0513860359787941,
|
1079 |
+
"learning_rate": 7.041217480625683e-05,
|
1080 |
+
"loss": 1.5856,
|
1081 |
+
"step": 1520
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.9138420188143945,
|
1085 |
+
"grad_norm": 0.05268612131476402,
|
1086 |
+
"learning_rate": 7.023081069879062e-05,
|
1087 |
+
"loss": 1.5846,
|
1088 |
+
"step": 1530
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.9198148424667761,
|
1092 |
+
"grad_norm": 0.05923028290271759,
|
1093 |
+
"learning_rate": 7.004798554795586e-05,
|
1094 |
+
"loss": 1.5739,
|
1095 |
+
"step": 1540
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.9257876661191579,
|
1099 |
+
"grad_norm": 0.04859180748462677,
|
1100 |
+
"learning_rate": 6.986370818962125e-05,
|
1101 |
+
"loss": 1.5927,
|
1102 |
+
"step": 1550
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.9317604897715395,
|
1106 |
+
"grad_norm": 0.060852836817502975,
|
1107 |
+
"learning_rate": 6.967798752984012e-05,
|
1108 |
+
"loss": 1.5769,
|
1109 |
+
"step": 1560
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.9377333134239212,
|
1113 |
+
"grad_norm": 0.053088609129190445,
|
1114 |
+
"learning_rate": 6.949083254442001e-05,
|
1115 |
+
"loss": 1.5845,
|
1116 |
+
"step": 1570
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.9437061370763028,
|
1120 |
+
"grad_norm": 0.06042907387018204,
|
1121 |
+
"learning_rate": 6.930225227848887e-05,
|
1122 |
+
"loss": 1.5808,
|
1123 |
+
"step": 1580
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.9496789607286845,
|
1127 |
+
"grad_norm": 0.05746331810951233,
|
1128 |
+
"learning_rate": 6.911225584605787e-05,
|
1129 |
+
"loss": 1.5821,
|
1130 |
+
"step": 1590
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.9556517843810661,
|
1134 |
+
"grad_norm": 0.04398033022880554,
|
1135 |
+
"learning_rate": 6.892085242958098e-05,
|
1136 |
+
"loss": 1.5775,
|
1137 |
+
"step": 1600
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.9616246080334478,
|
1141 |
+
"grad_norm": 0.050728365778923035,
|
1142 |
+
"learning_rate": 6.872805127951115e-05,
|
1143 |
+
"loss": 1.5749,
|
1144 |
+
"step": 1610
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.9675974316858295,
|
1148 |
+
"grad_norm": 0.0519120879471302,
|
1149 |
+
"learning_rate": 6.85338617138533e-05,
|
1150 |
+
"loss": 1.5726,
|
1151 |
+
"step": 1620
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.9735702553382112,
|
1155 |
+
"grad_norm": 0.052526745945215225,
|
1156 |
+
"learning_rate": 6.833829311771388e-05,
|
1157 |
+
"loss": 1.5793,
|
1158 |
+
"step": 1630
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.9795430789905928,
|
1162 |
+
"grad_norm": 0.050527602434158325,
|
1163 |
+
"learning_rate": 6.814135494284735e-05,
|
1164 |
+
"loss": 1.5694,
|
1165 |
+
"step": 1640
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.9855159026429745,
|
1169 |
+
"grad_norm": 0.08685663342475891,
|
1170 |
+
"learning_rate": 6.794305670719945e-05,
|
1171 |
+
"loss": 1.5803,
|
1172 |
+
"step": 1650
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.9914887262953561,
|
1176 |
+
"grad_norm": 0.054428499191999435,
|
1177 |
+
"learning_rate": 6.774340799444703e-05,
|
1178 |
+
"loss": 1.5757,
|
1179 |
+
"step": 1660
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.9974615499477378,
|
1183 |
+
"grad_norm": 0.05870772898197174,
|
1184 |
+
"learning_rate": 6.754241845353506e-05,
|
1185 |
+
"loss": 1.571,
|
1186 |
+
"step": 1670
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 1.0034343736001194,
|
1190 |
+
"grad_norm": 0.05581633001565933,
|
1191 |
+
"learning_rate": 6.734009779821018e-05,
|
1192 |
+
"loss": 1.5659,
|
1193 |
+
"step": 1680
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 1.0094071972525012,
|
1197 |
+
"grad_norm": 0.05493481829762459,
|
1198 |
+
"learning_rate": 6.713645580655125e-05,
|
1199 |
+
"loss": 1.5686,
|
1200 |
+
"step": 1690
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 1.0153800209048829,
|
1204 |
+
"grad_norm": 0.05471092462539673,
|
1205 |
+
"learning_rate": 6.693150232049686e-05,
|
1206 |
+
"loss": 1.5649,
|
1207 |
+
"step": 1700
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 1.0213528445572644,
|
1211 |
+
"grad_norm": 0.053526680916547775,
|
1212 |
+
"learning_rate": 6.672524724536956e-05,
|
1213 |
+
"loss": 1.5671,
|
1214 |
+
"step": 1710
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.027325668209646,
|
1218 |
+
"grad_norm": 0.06532900780439377,
|
1219 |
+
"learning_rate": 6.651770054939722e-05,
|
1220 |
+
"loss": 1.5614,
|
1221 |
+
"step": 1720
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.0332984918620278,
|
1225 |
+
"grad_norm": 0.051929574459791183,
|
1226 |
+
"learning_rate": 6.630887226323128e-05,
|
1227 |
+
"loss": 1.556,
|
1228 |
+
"step": 1730
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 1.0392713155144095,
|
1232 |
+
"grad_norm": 0.06289497762918472,
|
1233 |
+
"learning_rate": 6.609877247946186e-05,
|
1234 |
+
"loss": 1.5634,
|
1235 |
+
"step": 1740
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 1.045244139166791,
|
1239 |
+
"grad_norm": 0.05371445044875145,
|
1240 |
+
"learning_rate": 6.588741135213012e-05,
|
1241 |
+
"loss": 1.5645,
|
1242 |
+
"step": 1750
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 1.0512169628191728,
|
1246 |
+
"grad_norm": 0.04851632937788963,
|
1247 |
+
"learning_rate": 6.567479909623746e-05,
|
1248 |
+
"loss": 1.5648,
|
1249 |
+
"step": 1760
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 1.0571897864715545,
|
1253 |
+
"grad_norm": 0.06357111036777496,
|
1254 |
+
"learning_rate": 6.546094598725186e-05,
|
1255 |
+
"loss": 1.5568,
|
1256 |
+
"step": 1770
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.063162610123936,
|
1260 |
+
"grad_norm": 0.07035905867815018,
|
1261 |
+
"learning_rate": 6.524586236061117e-05,
|
1262 |
+
"loss": 1.5519,
|
1263 |
+
"step": 1780
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.0691354337763177,
|
1267 |
+
"grad_norm": 0.05517163127660751,
|
1268 |
+
"learning_rate": 6.502955861122377e-05,
|
1269 |
+
"loss": 1.5566,
|
1270 |
+
"step": 1790
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.0751082574286994,
|
1274 |
+
"grad_norm": 0.0504322424530983,
|
1275 |
+
"learning_rate": 6.481204519296606e-05,
|
1276 |
+
"loss": 1.5668,
|
1277 |
+
"step": 1800
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.0810810810810811,
|
1281 |
+
"grad_norm": 0.051910221576690674,
|
1282 |
+
"learning_rate": 6.459333261817726e-05,
|
1283 |
+
"loss": 1.5585,
|
1284 |
+
"step": 1810
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 1.0870539047334629,
|
1288 |
+
"grad_norm": 0.07319536805152893,
|
1289 |
+
"learning_rate": 6.43734314571514e-05,
|
1290 |
+
"loss": 1.5599,
|
1291 |
+
"step": 1820
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 1.0930267283858444,
|
1295 |
+
"grad_norm": 0.05212223529815674,
|
1296 |
+
"learning_rate": 6.415235233762635e-05,
|
1297 |
+
"loss": 1.5597,
|
1298 |
+
"step": 1830
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.098999552038226,
|
1302 |
+
"grad_norm": 0.05524059012532234,
|
1303 |
+
"learning_rate": 6.393010594427034e-05,
|
1304 |
+
"loss": 1.5449,
|
1305 |
+
"step": 1840
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.1049723756906078,
|
1309 |
+
"grad_norm": 0.044485364109277725,
|
1310 |
+
"learning_rate": 6.370670301816544e-05,
|
1311 |
+
"loss": 1.5584,
|
1312 |
+
"step": 1850
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.1109451993429893,
|
1316 |
+
"grad_norm": 0.04716966673731804,
|
1317 |
+
"learning_rate": 6.348215435628852e-05,
|
1318 |
+
"loss": 1.5577,
|
1319 |
+
"step": 1860
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.116918022995371,
|
1323 |
+
"grad_norm": 0.04776601493358612,
|
1324 |
+
"learning_rate": 6.32564708109894e-05,
|
1325 |
+
"loss": 1.5597,
|
1326 |
+
"step": 1870
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 1.1228908466477527,
|
1330 |
+
"grad_norm": 0.05379948392510414,
|
1331 |
+
"learning_rate": 6.302966328946638e-05,
|
1332 |
+
"loss": 1.5542,
|
1333 |
+
"step": 1880
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 1.1288636703001345,
|
1337 |
+
"grad_norm": 0.05076327919960022,
|
1338 |
+
"learning_rate": 6.280174275323915e-05,
|
1339 |
+
"loss": 1.5564,
|
1340 |
+
"step": 1890
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.134836493952516,
|
1344 |
+
"grad_norm": 0.0562434047460556,
|
1345 |
+
"learning_rate": 6.257272021761884e-05,
|
1346 |
+
"loss": 1.5597,
|
1347 |
+
"step": 1900
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.1408093176048977,
|
1351 |
+
"grad_norm": 0.045845337212085724,
|
1352 |
+
"learning_rate": 6.234260675117595e-05,
|
1353 |
+
"loss": 1.5535,
|
1354 |
+
"step": 1910
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 1.1467821412572794,
|
1358 |
+
"grad_norm": 0.04580407217144966,
|
1359 |
+
"learning_rate": 6.21114134752051e-05,
|
1360 |
+
"loss": 1.5486,
|
1361 |
+
"step": 1920
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.1527549649096611,
|
1365 |
+
"grad_norm": 0.05752042680978775,
|
1366 |
+
"learning_rate": 6.187915156318775e-05,
|
1367 |
+
"loss": 1.5454,
|
1368 |
+
"step": 1930
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 1.1587277885620426,
|
1372 |
+
"grad_norm": 0.05608632043004036,
|
1373 |
+
"learning_rate": 6.164583224025215e-05,
|
1374 |
+
"loss": 1.5545,
|
1375 |
+
"step": 1940
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 1.1647006122144243,
|
1379 |
+
"grad_norm": 0.047604430466890335,
|
1380 |
+
"learning_rate": 6.141146678263076e-05,
|
1381 |
+
"loss": 1.5531,
|
1382 |
+
"step": 1950
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.170673435866806,
|
1386 |
+
"grad_norm": 0.04514037445187569,
|
1387 |
+
"learning_rate": 6.117606651711537e-05,
|
1388 |
+
"loss": 1.5547,
|
1389 |
+
"step": 1960
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.1766462595191878,
|
1393 |
+
"grad_norm": 0.05768571048974991,
|
1394 |
+
"learning_rate": 6.0939642820509564e-05,
|
1395 |
+
"loss": 1.5496,
|
1396 |
+
"step": 1970
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 1.1826190831715693,
|
1400 |
+
"grad_norm": 0.04222779721021652,
|
1401 |
+
"learning_rate": 6.070220711907903e-05,
|
1402 |
+
"loss": 1.5469,
|
1403 |
+
"step": 1980
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 1.188591906823951,
|
1407 |
+
"grad_norm": 0.05183190852403641,
|
1408 |
+
"learning_rate": 6.046377088799923e-05,
|
1409 |
+
"loss": 1.5526,
|
1410 |
+
"step": 1990
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 1.1945647304763327,
|
1414 |
+
"grad_norm": 0.04888539016246796,
|
1415 |
+
"learning_rate": 6.0224345650800826e-05,
|
1416 |
+
"loss": 1.5579,
|
1417 |
+
"step": 2000
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 1.1945647304763327,
|
1421 |
+
"eval_loss": 1.5546131134033203,
|
1422 |
+
"eval_runtime": 20.1679,
|
1423 |
+
"eval_samples_per_second": 1717.237,
|
1424 |
+
"eval_steps_per_second": 13.437,
|
1425 |
+
"step": 2000
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.2005375541287144,
|
1429 |
+
"grad_norm": 0.049841009080410004,
|
1430 |
+
"learning_rate": 5.998394297881277e-05,
|
1431 |
+
"loss": 1.5531,
|
1432 |
+
"step": 2010
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 1.206510377781096,
|
1436 |
+
"grad_norm": 0.04911394044756889,
|
1437 |
+
"learning_rate": 5.974257449060306e-05,
|
1438 |
+
"loss": 1.5512,
|
1439 |
+
"step": 2020
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 1.2124832014334777,
|
1443 |
+
"grad_norm": 0.05170886963605881,
|
1444 |
+
"learning_rate": 5.9500251851417206e-05,
|
1445 |
+
"loss": 1.5439,
|
1446 |
+
"step": 2030
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 1.2184560250858594,
|
1450 |
+
"grad_norm": 0.04615171626210213,
|
1451 |
+
"learning_rate": 5.925698677261449e-05,
|
1452 |
+
"loss": 1.5453,
|
1453 |
+
"step": 2040
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 1.224428848738241,
|
1457 |
+
"grad_norm": 0.04724368825554848,
|
1458 |
+
"learning_rate": 5.901279101110191e-05,
|
1459 |
+
"loss": 1.5434,
|
1460 |
+
"step": 2050
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 1.2304016723906226,
|
1464 |
+
"grad_norm": 0.06991260498762131,
|
1465 |
+
"learning_rate": 5.8767676368766016e-05,
|
1466 |
+
"loss": 1.5489,
|
1467 |
+
"step": 2060
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 1.2363744960430043,
|
1471 |
+
"grad_norm": 0.055575910955667496,
|
1472 |
+
"learning_rate": 5.852165469190251e-05,
|
1473 |
+
"loss": 1.5514,
|
1474 |
+
"step": 2070
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"epoch": 1.242347319695386,
|
1478 |
+
"grad_norm": 0.04874608293175697,
|
1479 |
+
"learning_rate": 5.82747378706437e-05,
|
1480 |
+
"loss": 1.5523,
|
1481 |
+
"step": 2080
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 1.2483201433477678,
|
1485 |
+
"grad_norm": 0.05960864573717117,
|
1486 |
+
"learning_rate": 5.8026937838383914e-05,
|
1487 |
+
"loss": 1.5469,
|
1488 |
+
"step": 2090
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 1.2542929670001493,
|
1492 |
+
"grad_norm": 0.07086056470870972,
|
1493 |
+
"learning_rate": 5.77782665712027e-05,
|
1494 |
+
"loss": 1.5497,
|
1495 |
+
"step": 2100
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 1.260265790652531,
|
1499 |
+
"grad_norm": 0.0472436398267746,
|
1500 |
+
"learning_rate": 5.752873608728603e-05,
|
1501 |
+
"loss": 1.5425,
|
1502 |
+
"step": 2110
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 1.2662386143049127,
|
1506 |
+
"grad_norm": 0.06843575835227966,
|
1507 |
+
"learning_rate": 5.7278358446345545e-05,
|
1508 |
+
"loss": 1.542,
|
1509 |
+
"step": 2120
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 1.2722114379572944,
|
1513 |
+
"grad_norm": 0.04991114139556885,
|
1514 |
+
"learning_rate": 5.702714574903561e-05,
|
1515 |
+
"loss": 1.5423,
|
1516 |
+
"step": 2130
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 1.278184261609676,
|
1520 |
+
"grad_norm": 0.04601559415459633,
|
1521 |
+
"learning_rate": 5.6775110136368576e-05,
|
1522 |
+
"loss": 1.5357,
|
1523 |
+
"step": 2140
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 1.2841570852620576,
|
1527 |
+
"grad_norm": 0.042647868394851685,
|
1528 |
+
"learning_rate": 5.6522263789127937e-05,
|
1529 |
+
"loss": 1.5386,
|
1530 |
+
"step": 2150
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 1.2901299089144393,
|
1534 |
+
"grad_norm": 0.06261768937110901,
|
1535 |
+
"learning_rate": 5.626861892727969e-05,
|
1536 |
+
"loss": 1.5428,
|
1537 |
+
"step": 2160
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 1.2961027325668208,
|
1541 |
+
"grad_norm": 0.04735434427857399,
|
1542 |
+
"learning_rate": 5.601418780938175e-05,
|
1543 |
+
"loss": 1.5395,
|
1544 |
+
"step": 2170
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 1.3020755562192026,
|
1548 |
+
"grad_norm": 0.048824459314346313,
|
1549 |
+
"learning_rate": 5.575898273199146e-05,
|
1550 |
+
"loss": 1.5418,
|
1551 |
+
"step": 2180
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.3080483798715843,
|
1555 |
+
"grad_norm": 0.04974917694926262,
|
1556 |
+
"learning_rate": 5.5503016029071354e-05,
|
1557 |
+
"loss": 1.5371,
|
1558 |
+
"step": 2190
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"epoch": 1.314021203523966,
|
1562 |
+
"grad_norm": 0.05275791883468628,
|
1563 |
+
"learning_rate": 5.5246300071392985e-05,
|
1564 |
+
"loss": 1.5364,
|
1565 |
+
"step": 2200
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"epoch": 1.3199940271763477,
|
1569 |
+
"grad_norm": 0.0487825907766819,
|
1570 |
+
"learning_rate": 5.4988847265939146e-05,
|
1571 |
+
"loss": 1.5436,
|
1572 |
+
"step": 2210
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 1.3259668508287292,
|
1576 |
+
"grad_norm": 0.06100558117032051,
|
1577 |
+
"learning_rate": 5.473067005530416e-05,
|
1578 |
+
"loss": 1.5351,
|
1579 |
+
"step": 2220
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 1.331939674481111,
|
1583 |
+
"grad_norm": 0.07098929584026337,
|
1584 |
+
"learning_rate": 5.447178091709262e-05,
|
1585 |
+
"loss": 1.5463,
|
1586 |
+
"step": 2230
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 1.3379124981334927,
|
1590 |
+
"grad_norm": 0.06729080528020859,
|
1591 |
+
"learning_rate": 5.421219236331624e-05,
|
1592 |
+
"loss": 1.5382,
|
1593 |
+
"step": 2240
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.3438853217858742,
|
1597 |
+
"grad_norm": 0.05485675856471062,
|
1598 |
+
"learning_rate": 5.395191693978927e-05,
|
1599 |
+
"loss": 1.5349,
|
1600 |
+
"step": 2250
|
1601 |
+
},
|
1602 |
+
{
|
1603 |
+
"epoch": 1.3498581454382559,
|
1604 |
+
"grad_norm": 0.05816954746842384,
|
1605 |
+
"learning_rate": 5.3690967225522076e-05,
|
1606 |
+
"loss": 1.5406,
|
1607 |
+
"step": 2260
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"epoch": 1.3558309690906376,
|
1611 |
+
"grad_norm": 0.044427741318941116,
|
1612 |
+
"learning_rate": 5.342935583211327e-05,
|
1613 |
+
"loss": 1.5309,
|
1614 |
+
"step": 2270
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 1.3618037927430193,
|
1618 |
+
"grad_norm": 0.05544894561171532,
|
1619 |
+
"learning_rate": 5.31670954031401e-05,
|
1620 |
+
"loss": 1.5365,
|
1621 |
+
"step": 2280
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 1.367776616395401,
|
1625 |
+
"grad_norm": 0.04774465411901474,
|
1626 |
+
"learning_rate": 5.290419861354753e-05,
|
1627 |
+
"loss": 1.5303,
|
1628 |
+
"step": 2290
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 1.3737494400477825,
|
1632 |
+
"grad_norm": 0.050910986959934235,
|
1633 |
+
"learning_rate": 5.264067816903552e-05,
|
1634 |
+
"loss": 1.5384,
|
1635 |
+
"step": 2300
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.3797222637001643,
|
1639 |
+
"grad_norm": 0.05830187723040581,
|
1640 |
+
"learning_rate": 5.2376546805445054e-05,
|
1641 |
+
"loss": 1.535,
|
1642 |
+
"step": 2310
|
1643 |
+
},
|
1644 |
+
{
|
1645 |
+
"epoch": 1.385695087352546,
|
1646 |
+
"grad_norm": 0.0521889254450798,
|
1647 |
+
"learning_rate": 5.211181728814262e-05,
|
1648 |
+
"loss": 1.5348,
|
1649 |
+
"step": 2320
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 1.3916679110049275,
|
1653 |
+
"grad_norm": 0.04742933064699173,
|
1654 |
+
"learning_rate": 5.18465024114032e-05,
|
1655 |
+
"loss": 1.5421,
|
1656 |
+
"step": 2330
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 1.3976407346573092,
|
1660 |
+
"grad_norm": 0.05169609189033508,
|
1661 |
+
"learning_rate": 5.158061499779201e-05,
|
1662 |
+
"loss": 1.5322,
|
1663 |
+
"step": 2340
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 1.403613558309691,
|
1667 |
+
"grad_norm": 0.05307742580771446,
|
1668 |
+
"learning_rate": 5.131416789754472e-05,
|
1669 |
+
"loss": 1.538,
|
1670 |
+
"step": 2350
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.4095863819620726,
|
1674 |
+
"grad_norm": 0.04581635445356369,
|
1675 |
+
"learning_rate": 5.1047173987946474e-05,
|
1676 |
+
"loss": 1.5313,
|
1677 |
+
"step": 2360
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.4155592056144544,
|
1681 |
+
"grad_norm": 0.04794102534651756,
|
1682 |
+
"learning_rate": 5.077964617270947e-05,
|
1683 |
+
"loss": 1.5357,
|
1684 |
+
"step": 2370
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 1.4215320292668359,
|
1688 |
+
"grad_norm": 0.043038323521614075,
|
1689 |
+
"learning_rate": 5.051159738134937e-05,
|
1690 |
+
"loss": 1.5362,
|
1691 |
+
"step": 2380
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 1.4275048529192176,
|
1695 |
+
"grad_norm": 0.052804794162511826,
|
1696 |
+
"learning_rate": 5.024304056856039e-05,
|
1697 |
+
"loss": 1.5299,
|
1698 |
+
"step": 2390
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 1.4334776765715993,
|
1702 |
+
"grad_norm": 0.051046222448349,
|
1703 |
+
"learning_rate": 4.997398871358928e-05,
|
1704 |
+
"loss": 1.529,
|
1705 |
+
"step": 2400
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 1.4394505002239808,
|
1709 |
+
"grad_norm": 0.056139182299375534,
|
1710 |
+
"learning_rate": 4.970445481960793e-05,
|
1711 |
+
"loss": 1.5368,
|
1712 |
+
"step": 2410
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 1.4454233238763625,
|
1716 |
+
"grad_norm": 0.04890932887792587,
|
1717 |
+
"learning_rate": 4.9434451913085e-05,
|
1718 |
+
"loss": 1.5308,
|
1719 |
+
"step": 2420
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.4513961475287442,
|
1723 |
+
"grad_norm": 0.04679281637072563,
|
1724 |
+
"learning_rate": 4.916399304315636e-05,
|
1725 |
+
"loss": 1.5353,
|
1726 |
+
"step": 2430
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 1.457368971181126,
|
1730 |
+
"grad_norm": 0.05536729097366333,
|
1731 |
+
"learning_rate": 4.8893091280994415e-05,
|
1732 |
+
"loss": 1.5314,
|
1733 |
+
"step": 2440
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 1.4633417948335075,
|
1737 |
+
"grad_norm": 0.04933058097958565,
|
1738 |
+
"learning_rate": 4.862175971917637e-05,
|
1739 |
+
"loss": 1.5301,
|
1740 |
+
"step": 2450
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 1.4693146184858892,
|
1744 |
+
"grad_norm": 0.05884556844830513,
|
1745 |
+
"learning_rate": 4.835001147105148e-05,
|
1746 |
+
"loss": 1.5213,
|
1747 |
+
"step": 2460
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 1.475287442138271,
|
1751 |
+
"grad_norm": 0.04465237259864807,
|
1752 |
+
"learning_rate": 4.807785967010729e-05,
|
1753 |
+
"loss": 1.5288,
|
1754 |
+
"step": 2470
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 1.4812602657906524,
|
1758 |
+
"grad_norm": 0.04548431187868118,
|
1759 |
+
"learning_rate": 4.780531746933491e-05,
|
1760 |
+
"loss": 1.5353,
|
1761 |
+
"step": 2480
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.4872330894430341,
|
1765 |
+
"grad_norm": 0.047798071056604385,
|
1766 |
+
"learning_rate": 4.7532398040593295e-05,
|
1767 |
+
"loss": 1.5261,
|
1768 |
+
"step": 2490
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 1.4932059130954158,
|
1772 |
+
"grad_norm": 0.05616561323404312,
|
1773 |
+
"learning_rate": 4.7259114573972715e-05,
|
1774 |
+
"loss": 1.5343,
|
1775 |
+
"step": 2500
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 1.4991787367477976,
|
1779 |
+
"grad_norm": 0.053861986845731735,
|
1780 |
+
"learning_rate": 4.6985480277157215e-05,
|
1781 |
+
"loss": 1.5249,
|
1782 |
+
"step": 2510
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 1.5051515604001793,
|
1786 |
+
"grad_norm": 0.05890486761927605,
|
1787 |
+
"learning_rate": 4.671150837478634e-05,
|
1788 |
+
"loss": 1.5357,
|
1789 |
+
"step": 2520
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 1.511124384052561,
|
1793 |
+
"grad_norm": 0.056382015347480774,
|
1794 |
+
"learning_rate": 4.643721210781601e-05,
|
1795 |
+
"loss": 1.5159,
|
1796 |
+
"step": 2530
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 1.5170972077049425,
|
1800 |
+
"grad_norm": 0.051396943628787994,
|
1801 |
+
"learning_rate": 4.6162604732878515e-05,
|
1802 |
+
"loss": 1.5301,
|
1803 |
+
"step": 2540
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.5230700313573242,
|
1807 |
+
"grad_norm": 0.04754629358649254,
|
1808 |
+
"learning_rate": 4.588769952164191e-05,
|
1809 |
+
"loss": 1.5277,
|
1810 |
+
"step": 2550
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"epoch": 1.5290428550097057,
|
1814 |
+
"grad_norm": 0.0532587394118309,
|
1815 |
+
"learning_rate": 4.561250976016851e-05,
|
1816 |
+
"loss": 1.5201,
|
1817 |
+
"step": 2560
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 1.5350156786620874,
|
1821 |
+
"grad_norm": 0.059257134795188904,
|
1822 |
+
"learning_rate": 4.5337048748272905e-05,
|
1823 |
+
"loss": 1.5265,
|
1824 |
+
"step": 2570
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 1.5409885023144692,
|
1828 |
+
"grad_norm": 0.05495699495077133,
|
1829 |
+
"learning_rate": 4.5061329798879064e-05,
|
1830 |
+
"loss": 1.5247,
|
1831 |
+
"step": 2580
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 1.5469613259668509,
|
1835 |
+
"grad_norm": 0.04833153635263443,
|
1836 |
+
"learning_rate": 4.478536623737699e-05,
|
1837 |
+
"loss": 1.5291,
|
1838 |
+
"step": 2590
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 1.5529341496192326,
|
1842 |
+
"grad_norm": 0.048605091869831085,
|
1843 |
+
"learning_rate": 4.450917140097869e-05,
|
1844 |
+
"loss": 1.5277,
|
1845 |
+
"step": 2600
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 1.5589069732716143,
|
1849 |
+
"grad_norm": 0.06368768960237503,
|
1850 |
+
"learning_rate": 4.4232758638073585e-05,
|
1851 |
+
"loss": 1.5306,
|
1852 |
+
"step": 2610
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 1.5648797969239958,
|
1856 |
+
"grad_norm": 0.04569351673126221,
|
1857 |
+
"learning_rate": 4.395614130758344e-05,
|
1858 |
+
"loss": 1.5208,
|
1859 |
+
"step": 2620
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 1.5708526205763775,
|
1863 |
+
"grad_norm": 0.07877717167139053,
|
1864 |
+
"learning_rate": 4.367933277831666e-05,
|
1865 |
+
"loss": 1.5152,
|
1866 |
+
"step": 2630
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 1.576825444228759,
|
1870 |
+
"grad_norm": 0.05059320852160454,
|
1871 |
+
"learning_rate": 4.34023464283222e-05,
|
1872 |
+
"loss": 1.5199,
|
1873 |
+
"step": 2640
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 1.5827982678811408,
|
1877 |
+
"grad_norm": 0.05248813331127167,
|
1878 |
+
"learning_rate": 4.312519564424306e-05,
|
1879 |
+
"loss": 1.5236,
|
1880 |
+
"step": 2650
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 1.5887710915335225,
|
1884 |
+
"grad_norm": 0.051895346492528915,
|
1885 |
+
"learning_rate": 4.2847893820669244e-05,
|
1886 |
+
"loss": 1.5225,
|
1887 |
+
"step": 2660
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 1.5947439151859042,
|
1891 |
+
"grad_norm": 0.048129428178071976,
|
1892 |
+
"learning_rate": 4.2570454359490455e-05,
|
1893 |
+
"loss": 1.5259,
|
1894 |
+
"step": 2670
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 1.600716738838286,
|
1898 |
+
"grad_norm": 0.049009375274181366,
|
1899 |
+
"learning_rate": 4.2292890669248364e-05,
|
1900 |
+
"loss": 1.533,
|
1901 |
+
"step": 2680
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 1.6066895624906674,
|
1905 |
+
"grad_norm": 0.05925741046667099,
|
1906 |
+
"learning_rate": 4.2015216164488575e-05,
|
1907 |
+
"loss": 1.5242,
|
1908 |
+
"step": 2690
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 1.6126623861430491,
|
1912 |
+
"grad_norm": 0.051209457218647,
|
1913 |
+
"learning_rate": 4.173744426511231e-05,
|
1914 |
+
"loss": 1.5348,
|
1915 |
+
"step": 2700
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 1.6186352097954306,
|
1919 |
+
"grad_norm": 0.04731997102499008,
|
1920 |
+
"learning_rate": 4.1459588395727876e-05,
|
1921 |
+
"loss": 1.5179,
|
1922 |
+
"step": 2710
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 1.6246080334478123,
|
1926 |
+
"grad_norm": 0.04640951007604599,
|
1927 |
+
"learning_rate": 4.118166198500178e-05,
|
1928 |
+
"loss": 1.5218,
|
1929 |
+
"step": 2720
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 1.630580857100194,
|
1933 |
+
"grad_norm": 0.05060356855392456,
|
1934 |
+
"learning_rate": 4.090367846500976e-05,
|
1935 |
+
"loss": 1.5184,
|
1936 |
+
"step": 2730
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 1.6365536807525758,
|
1940 |
+
"grad_norm": 0.04525948315858841,
|
1941 |
+
"learning_rate": 4.062565127058764e-05,
|
1942 |
+
"loss": 1.5207,
|
1943 |
+
"step": 2740
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 1.6425265044049575,
|
1947 |
+
"grad_norm": 0.0447864904999733,
|
1948 |
+
"learning_rate": 4.0347593838682016e-05,
|
1949 |
+
"loss": 1.5265,
|
1950 |
+
"step": 2750
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 1.6484993280573392,
|
1954 |
+
"grad_norm": 0.06339412927627563,
|
1955 |
+
"learning_rate": 4.006951960770084e-05,
|
1956 |
+
"loss": 1.5296,
|
1957 |
+
"step": 2760
|
1958 |
+
},
|
1959 |
+
{
|
1960 |
+
"epoch": 1.6544721517097207,
|
1961 |
+
"grad_norm": 0.05479173734784126,
|
1962 |
+
"learning_rate": 3.979144201686396e-05,
|
1963 |
+
"loss": 1.5167,
|
1964 |
+
"step": 2770
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 1.6604449753621024,
|
1968 |
+
"grad_norm": 0.05605393648147583,
|
1969 |
+
"learning_rate": 3.951337450555361e-05,
|
1970 |
+
"loss": 1.5208,
|
1971 |
+
"step": 2780
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 1.666417799014484,
|
1975 |
+
"grad_norm": 0.04500933736562729,
|
1976 |
+
"learning_rate": 3.923533051266486e-05,
|
1977 |
+
"loss": 1.5199,
|
1978 |
+
"step": 2790
|
1979 |
+
},
|
1980 |
+
{
|
1981 |
+
"epoch": 1.6723906226668657,
|
1982 |
+
"grad_norm": 0.044439464807510376,
|
1983 |
+
"learning_rate": 3.8957323475956165e-05,
|
1984 |
+
"loss": 1.5254,
|
1985 |
+
"step": 2800
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 1.6783634463192474,
|
1989 |
+
"grad_norm": 0.051942795515060425,
|
1990 |
+
"learning_rate": 3.867936683139991e-05,
|
1991 |
+
"loss": 1.5168,
|
1992 |
+
"step": 2810
|
1993 |
+
},
|
1994 |
+
{
|
1995 |
+
"epoch": 1.684336269971629,
|
1996 |
+
"grad_norm": 0.05696643143892288,
|
1997 |
+
"learning_rate": 3.840147401253305e-05,
|
1998 |
+
"loss": 1.5261,
|
1999 |
+
"step": 2820
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"epoch": 1.6903090936240108,
|
2003 |
+
"grad_norm": 0.0423273928463459,
|
2004 |
+
"learning_rate": 3.812365844980782e-05,
|
2005 |
+
"loss": 1.5166,
|
2006 |
+
"step": 2830
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 1.6962819172763925,
|
2010 |
+
"grad_norm": 0.04251600056886673,
|
2011 |
+
"learning_rate": 3.784593356994275e-05,
|
2012 |
+
"loss": 1.514,
|
2013 |
+
"step": 2840
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 1.702254740928774,
|
2017 |
+
"grad_norm": 0.06778108328580856,
|
2018 |
+
"learning_rate": 3.7568312795273675e-05,
|
2019 |
+
"loss": 1.5161,
|
2020 |
+
"step": 2850
|
2021 |
+
},
|
2022 |
+
{
|
2023 |
+
"epoch": 1.7082275645811558,
|
2024 |
+
"grad_norm": 0.046843383461236954,
|
2025 |
+
"learning_rate": 3.729080954310509e-05,
|
2026 |
+
"loss": 1.5215,
|
2027 |
+
"step": 2860
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"epoch": 1.7142003882335373,
|
2031 |
+
"grad_norm": 0.04683705046772957,
|
2032 |
+
"learning_rate": 3.701343722506164e-05,
|
2033 |
+
"loss": 1.5191,
|
2034 |
+
"step": 2870
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 1.720173211885919,
|
2038 |
+
"grad_norm": 0.04883548244833946,
|
2039 |
+
"learning_rate": 3.673620924644e-05,
|
2040 |
+
"loss": 1.5175,
|
2041 |
+
"step": 2880
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 1.7261460355383007,
|
2045 |
+
"grad_norm": 0.047556836158037186,
|
2046 |
+
"learning_rate": 3.6459139005560966e-05,
|
2047 |
+
"loss": 1.5191,
|
2048 |
+
"step": 2890
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 1.7321188591906824,
|
2052 |
+
"grad_norm": 0.04096701368689537,
|
2053 |
+
"learning_rate": 3.618223989312195e-05,
|
2054 |
+
"loss": 1.5195,
|
2055 |
+
"step": 2900
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 1.7380916828430641,
|
2059 |
+
"grad_norm": 0.043791547417640686,
|
2060 |
+
"learning_rate": 3.590552529154974e-05,
|
2061 |
+
"loss": 1.5149,
|
2062 |
+
"step": 2910
|
2063 |
+
},
|
2064 |
+
{
|
2065 |
+
"epoch": 1.7440645064954459,
|
2066 |
+
"grad_norm": 0.06429862976074219,
|
2067 |
+
"learning_rate": 3.562900857435384e-05,
|
2068 |
+
"loss": 1.5136,
|
2069 |
+
"step": 2920
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"epoch": 1.7500373301478274,
|
2073 |
+
"grad_norm": 0.04811246693134308,
|
2074 |
+
"learning_rate": 3.535270310548007e-05,
|
2075 |
+
"loss": 1.5178,
|
2076 |
+
"step": 2930
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"epoch": 1.756010153800209,
|
2080 |
+
"grad_norm": 0.05720449239015579,
|
2081 |
+
"learning_rate": 3.5076622238664675e-05,
|
2082 |
+
"loss": 1.5112,
|
2083 |
+
"step": 2940
|
2084 |
+
},
|
2085 |
+
{
|
2086 |
+
"epoch": 1.7619829774525906,
|
2087 |
+
"grad_norm": 0.04717197269201279,
|
2088 |
+
"learning_rate": 3.480077931678899e-05,
|
2089 |
+
"loss": 1.5147,
|
2090 |
+
"step": 2950
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 1.7679558011049723,
|
2094 |
+
"grad_norm": 0.04889809712767601,
|
2095 |
+
"learning_rate": 3.452518767123456e-05,
|
2096 |
+
"loss": 1.5186,
|
2097 |
+
"step": 2960
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 1.773928624757354,
|
2101 |
+
"grad_norm": 0.055686600506305695,
|
2102 |
+
"learning_rate": 3.424986062123883e-05,
|
2103 |
+
"loss": 1.5105,
|
2104 |
+
"step": 2970
|
2105 |
+
},
|
2106 |
+
{
|
2107 |
+
"epoch": 1.7799014484097357,
|
2108 |
+
"grad_norm": 0.045671623200178146,
|
2109 |
+
"learning_rate": 3.397481147325146e-05,
|
2110 |
+
"loss": 1.5236,
|
2111 |
+
"step": 2980
|
2112 |
+
},
|
2113 |
+
{
|
2114 |
+
"epoch": 1.7858742720621175,
|
2115 |
+
"grad_norm": 0.0518915057182312,
|
2116 |
+
"learning_rate": 3.370005352029122e-05,
|
2117 |
+
"loss": 1.5082,
|
2118 |
+
"step": 2990
|
2119 |
+
},
|
2120 |
+
{
|
2121 |
+
"epoch": 1.7918470957144992,
|
2122 |
+
"grad_norm": 0.0466337613761425,
|
2123 |
+
"learning_rate": 3.342560004130351e-05,
|
2124 |
+
"loss": 1.5246,
|
2125 |
+
"step": 3000
|
2126 |
+
},
|
2127 |
+
{
|
2128 |
+
"epoch": 1.7918470957144992,
|
2129 |
+
"eval_loss": 1.5170252323150635,
|
2130 |
+
"eval_runtime": 20.1093,
|
2131 |
+
"eval_samples_per_second": 1722.235,
|
2132 |
+
"eval_steps_per_second": 13.476,
|
2133 |
+
"step": 3000
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 1.7978199193668807,
|
2137 |
+
"grad_norm": 0.04238193854689598,
|
2138 |
+
"learning_rate": 3.3151464300518634e-05,
|
2139 |
+
"loss": 1.5097,
|
2140 |
+
"step": 3010
|
2141 |
+
},
|
2142 |
+
{
|
2143 |
+
"epoch": 1.8037927430192624,
|
2144 |
+
"grad_norm": 0.050784409046173096,
|
2145 |
+
"learning_rate": 3.2877659546810745e-05,
|
2146 |
+
"loss": 1.5195,
|
2147 |
+
"step": 3020
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 1.809765566671644,
|
2151 |
+
"grad_norm": 0.04055749997496605,
|
2152 |
+
"learning_rate": 3.260419901305751e-05,
|
2153 |
+
"loss": 1.5171,
|
2154 |
+
"step": 3030
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 1.8157383903240256,
|
2158 |
+
"grad_norm": 0.05311364307999611,
|
2159 |
+
"learning_rate": 3.2331095915500564e-05,
|
2160 |
+
"loss": 1.5136,
|
2161 |
+
"step": 3040
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 1.8217112139764073,
|
2165 |
+
"grad_norm": 0.0499190054833889,
|
2166 |
+
"learning_rate": 3.205836345310681e-05,
|
2167 |
+
"loss": 1.5081,
|
2168 |
+
"step": 3050
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 1.827684037628789,
|
2172 |
+
"grad_norm": 0.056762441992759705,
|
2173 |
+
"learning_rate": 3.178601480693048e-05,
|
2174 |
+
"loss": 1.5243,
|
2175 |
+
"step": 3060
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 1.8336568612811708,
|
2179 |
+
"grad_norm": 0.04753740131855011,
|
2180 |
+
"learning_rate": 3.151406313947615e-05,
|
2181 |
+
"loss": 1.5069,
|
2182 |
+
"step": 3070
|
2183 |
+
},
|
2184 |
+
{
|
2185 |
+
"epoch": 1.8396296849335525,
|
2186 |
+
"grad_norm": 0.054608915001153946,
|
2187 |
+
"learning_rate": 3.124252159406251e-05,
|
2188 |
+
"loss": 1.5172,
|
2189 |
+
"step": 3080
|
2190 |
+
},
|
2191 |
+
{
|
2192 |
+
"epoch": 1.845602508585934,
|
2193 |
+
"grad_norm": 0.04840042069554329,
|
2194 |
+
"learning_rate": 3.097140329418726e-05,
|
2195 |
+
"loss": 1.5126,
|
2196 |
+
"step": 3090
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"epoch": 1.8515753322383157,
|
2200 |
+
"grad_norm": 0.05584624037146568,
|
2201 |
+
"learning_rate": 3.07007213428928e-05,
|
2202 |
+
"loss": 1.5091,
|
2203 |
+
"step": 3100
|
2204 |
+
},
|
2205 |
+
{
|
2206 |
+
"epoch": 1.8575481558906972,
|
2207 |
+
"grad_norm": 0.0425049252808094,
|
2208 |
+
"learning_rate": 3.0430488822132957e-05,
|
2209 |
+
"loss": 1.5155,
|
2210 |
+
"step": 3110
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 1.863520979543079,
|
2214 |
+
"grad_norm": 0.043588876724243164,
|
2215 |
+
"learning_rate": 3.016071879214077e-05,
|
2216 |
+
"loss": 1.5099,
|
2217 |
+
"step": 3120
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 1.8694938031954607,
|
2221 |
+
"grad_norm": 0.041503310203552246,
|
2222 |
+
"learning_rate": 2.989142429079725e-05,
|
2223 |
+
"loss": 1.509,
|
2224 |
+
"step": 3130
|
2225 |
+
},
|
2226 |
+
{
|
2227 |
+
"epoch": 1.8754666268478424,
|
2228 |
+
"grad_norm": 0.04797055944800377,
|
2229 |
+
"learning_rate": 2.962261833300133e-05,
|
2230 |
+
"loss": 1.507,
|
2231 |
+
"step": 3140
|
2232 |
+
},
|
2233 |
+
{
|
2234 |
+
"epoch": 1.881439450500224,
|
2235 |
+
"grad_norm": 0.05003626272082329,
|
2236 |
+
"learning_rate": 2.935431391004081e-05,
|
2237 |
+
"loss": 1.5177,
|
2238 |
+
"step": 3150
|
2239 |
+
},
|
2240 |
+
{
|
2241 |
+
"epoch": 1.8874122741526056,
|
2242 |
+
"grad_norm": 0.04475341737270355,
|
2243 |
+
"learning_rate": 2.9086523988964478e-05,
|
2244 |
+
"loss": 1.5077,
|
2245 |
+
"step": 3160
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"epoch": 1.8933850978049873,
|
2249 |
+
"grad_norm": 0.04602671042084694,
|
2250 |
+
"learning_rate": 2.881926151195547e-05,
|
2251 |
+
"loss": 1.5037,
|
2252 |
+
"step": 3170
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 1.8993579214573688,
|
2256 |
+
"grad_norm": 0.04945210739970207,
|
2257 |
+
"learning_rate": 2.855253939570578e-05,
|
2258 |
+
"loss": 1.503,
|
2259 |
+
"step": 3180
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 1.9053307451097505,
|
2263 |
+
"grad_norm": 0.04730582609772682,
|
2264 |
+
"learning_rate": 2.8286370530791914e-05,
|
2265 |
+
"loss": 1.5064,
|
2266 |
+
"step": 3190
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 1.9113035687621323,
|
2270 |
+
"grad_norm": 0.05128956586122513,
|
2271 |
+
"learning_rate": 2.8020767781052016e-05,
|
2272 |
+
"loss": 1.5126,
|
2273 |
+
"step": 3200
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 1.917276392414514,
|
2277 |
+
"grad_norm": 0.055559854954481125,
|
2278 |
+
"learning_rate": 2.7755743982964066e-05,
|
2279 |
+
"loss": 1.5052,
|
2280 |
+
"step": 3210
|
2281 |
+
},
|
2282 |
+
{
|
2283 |
+
"epoch": 1.9232492160668957,
|
2284 |
+
"grad_norm": 0.036298781633377075,
|
2285 |
+
"learning_rate": 2.749131194502555e-05,
|
2286 |
+
"loss": 1.5092,
|
2287 |
+
"step": 3220
|
2288 |
+
},
|
2289 |
+
{
|
2290 |
+
"epoch": 1.9292220397192774,
|
2291 |
+
"grad_norm": 0.042619943618774414,
|
2292 |
+
"learning_rate": 2.7227484447134398e-05,
|
2293 |
+
"loss": 1.5044,
|
2294 |
+
"step": 3230
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 1.935194863371659,
|
2298 |
+
"grad_norm": 0.052806805819272995,
|
2299 |
+
"learning_rate": 2.696427423997138e-05,
|
2300 |
+
"loss": 1.5056,
|
2301 |
+
"step": 3240
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 1.9411676870240406,
|
2305 |
+
"grad_norm": 0.044467948377132416,
|
2306 |
+
"learning_rate": 2.670169404438383e-05,
|
2307 |
+
"loss": 1.5114,
|
2308 |
+
"step": 3250
|
2309 |
+
},
|
2310 |
+
{
|
2311 |
+
"epoch": 1.9471405106764221,
|
2312 |
+
"grad_norm": 0.038638997822999954,
|
2313 |
+
"learning_rate": 2.6439756550770872e-05,
|
2314 |
+
"loss": 1.5154,
|
2315 |
+
"step": 3260
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"epoch": 1.9531133343288039,
|
2319 |
+
"grad_norm": 0.04845379292964935,
|
2320 |
+
"learning_rate": 2.617847441847007e-05,
|
2321 |
+
"loss": 1.51,
|
2322 |
+
"step": 3270
|
2323 |
+
},
|
2324 |
+
{
|
2325 |
+
"epoch": 1.9590861579811856,
|
2326 |
+
"grad_norm": 0.0445607528090477,
|
2327 |
+
"learning_rate": 2.5917860275145658e-05,
|
2328 |
+
"loss": 1.5047,
|
2329 |
+
"step": 3280
|
2330 |
+
},
|
2331 |
+
{
|
2332 |
+
"epoch": 1.9650589816335673,
|
2333 |
+
"grad_norm": 0.045905206352472305,
|
2334 |
+
"learning_rate": 2.5657926716178217e-05,
|
2335 |
+
"loss": 1.5118,
|
2336 |
+
"step": 3290
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 1.971031805285949,
|
2340 |
+
"grad_norm": 0.04530317336320877,
|
2341 |
+
"learning_rate": 2.539868630405594e-05,
|
2342 |
+
"loss": 1.5099,
|
2343 |
+
"step": 3300
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 1.9770046289383307,
|
2347 |
+
"grad_norm": 0.04195258021354675,
|
2348 |
+
"learning_rate": 2.5140151567767505e-05,
|
2349 |
+
"loss": 1.5075,
|
2350 |
+
"step": 3310
|
2351 |
+
},
|
2352 |
+
{
|
2353 |
+
"epoch": 1.9829774525907122,
|
2354 |
+
"grad_norm": 0.043815840035676956,
|
2355 |
+
"learning_rate": 2.4882335002196553e-05,
|
2356 |
+
"loss": 1.5096,
|
2357 |
+
"step": 3320
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 1.988950276243094,
|
2361 |
+
"grad_norm": 0.04683714732527733,
|
2362 |
+
"learning_rate": 2.4625249067517803e-05,
|
2363 |
+
"loss": 1.5057,
|
2364 |
+
"step": 3330
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 1.9949230998954754,
|
2368 |
+
"grad_norm": 0.049690209329128265,
|
2369 |
+
"learning_rate": 2.4368906188594877e-05,
|
2370 |
+
"loss": 1.5106,
|
2371 |
+
"step": 3340
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 2.000895923547857,
|
2375 |
+
"grad_norm": 0.048324376344680786,
|
2376 |
+
"learning_rate": 2.4113318754379816e-05,
|
2377 |
+
"loss": 1.5042,
|
2378 |
+
"step": 3350
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 2.006868747200239,
|
2382 |
+
"grad_norm": 0.05503029376268387,
|
2383 |
+
"learning_rate": 2.385849911731426e-05,
|
2384 |
+
"loss": 1.4922,
|
2385 |
+
"step": 3360
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 2.0128415708526206,
|
2389 |
+
"grad_norm": 0.049435921013355255,
|
2390 |
+
"learning_rate": 2.360445959273255e-05,
|
2391 |
+
"loss": 1.4962,
|
2392 |
+
"step": 3370
|
2393 |
+
},
|
2394 |
+
{
|
2395 |
+
"epoch": 2.0188143945050023,
|
2396 |
+
"grad_norm": 0.05086649954319,
|
2397 |
+
"learning_rate": 2.3351212458266512e-05,
|
2398 |
+
"loss": 1.4918,
|
2399 |
+
"step": 3380
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 2.024787218157384,
|
2403 |
+
"grad_norm": 0.045887332409620285,
|
2404 |
+
"learning_rate": 2.3098769953252002e-05,
|
2405 |
+
"loss": 1.4868,
|
2406 |
+
"step": 3390
|
2407 |
+
},
|
2408 |
+
{
|
2409 |
+
"epoch": 2.0307600418097658,
|
2410 |
+
"grad_norm": 0.04303443059325218,
|
2411 |
+
"learning_rate": 2.2847144278137502e-05,
|
2412 |
+
"loss": 1.4982,
|
2413 |
+
"step": 3400
|
2414 |
+
},
|
2415 |
+
{
|
2416 |
+
"epoch": 2.036732865462147,
|
2417 |
+
"grad_norm": 0.043649692088365555,
|
2418 |
+
"learning_rate": 2.2596347593894387e-05,
|
2419 |
+
"loss": 1.5,
|
2420 |
+
"step": 3410
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 2.0427056891145288,
|
2424 |
+
"grad_norm": 0.04276139661669731,
|
2425 |
+
"learning_rate": 2.2346392021429254e-05,
|
2426 |
+
"loss": 1.4903,
|
2427 |
+
"step": 3420
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 2.0486785127669105,
|
2431 |
+
"grad_norm": 0.04298582300543785,
|
2432 |
+
"learning_rate": 2.2097289640998074e-05,
|
2433 |
+
"loss": 1.5032,
|
2434 |
+
"step": 3430
|
2435 |
+
},
|
2436 |
+
{
|
2437 |
+
"epoch": 2.054651336419292,
|
2438 |
+
"grad_norm": 0.053750213235616684,
|
2439 |
+
"learning_rate": 2.1849052491622374e-05,
|
2440 |
+
"loss": 1.4942,
|
2441 |
+
"step": 3440
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 2.060624160071674,
|
2445 |
+
"grad_norm": 0.042636483907699585,
|
2446 |
+
"learning_rate": 2.160169257050742e-05,
|
2447 |
+
"loss": 1.4976,
|
2448 |
+
"step": 3450
|
2449 |
+
},
|
2450 |
+
{
|
2451 |
+
"epoch": 2.0665969837240556,
|
2452 |
+
"grad_norm": 0.05124128982424736,
|
2453 |
+
"learning_rate": 2.135522183246237e-05,
|
2454 |
+
"loss": 1.4981,
|
2455 |
+
"step": 3460
|
2456 |
+
},
|
2457 |
+
{
|
2458 |
+
"epoch": 2.0725698073764374,
|
2459 |
+
"grad_norm": 0.047978244721889496,
|
2460 |
+
"learning_rate": 2.110965218932247e-05,
|
2461 |
+
"loss": 1.4975,
|
2462 |
+
"step": 3470
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 2.078542631028819,
|
2466 |
+
"grad_norm": 0.045476969331502914,
|
2467 |
+
"learning_rate": 2.0864995509373448e-05,
|
2468 |
+
"loss": 1.4958,
|
2469 |
+
"step": 3480
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 2.0845154546812004,
|
2473 |
+
"grad_norm": 0.05264231190085411,
|
2474 |
+
"learning_rate": 2.062126361677786e-05,
|
2475 |
+
"loss": 1.4996,
|
2476 |
+
"step": 3490
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 2.090488278333582,
|
2480 |
+
"grad_norm": 0.05144358426332474,
|
2481 |
+
"learning_rate": 2.037846829100364e-05,
|
2482 |
+
"loss": 1.5077,
|
2483 |
+
"step": 3500
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 2.096461101985964,
|
2487 |
+
"grad_norm": 0.048265036195516586,
|
2488 |
+
"learning_rate": 2.013662126625482e-05,
|
2489 |
+
"loss": 1.4987,
|
2490 |
+
"step": 3510
|
2491 |
+
},
|
2492 |
+
{
|
2493 |
+
"epoch": 2.1024339256383455,
|
2494 |
+
"grad_norm": 0.04586884751915932,
|
2495 |
+
"learning_rate": 1.9895734230904396e-05,
|
2496 |
+
"loss": 1.5044,
|
2497 |
+
"step": 3520
|
2498 |
+
},
|
2499 |
+
{
|
2500 |
+
"epoch": 2.1084067492907272,
|
2501 |
+
"grad_norm": 0.03930211812257767,
|
2502 |
+
"learning_rate": 1.965581882692949e-05,
|
2503 |
+
"loss": 1.4951,
|
2504 |
+
"step": 3530
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 2.114379572943109,
|
2508 |
+
"grad_norm": 0.051928870379924774,
|
2509 |
+
"learning_rate": 1.9416886649348575e-05,
|
2510 |
+
"loss": 1.4962,
|
2511 |
+
"step": 3540
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 2.1203523965954907,
|
2515 |
+
"grad_norm": 0.04466070607304573,
|
2516 |
+
"learning_rate": 1.917894924566125e-05,
|
2517 |
+
"loss": 1.4874,
|
2518 |
+
"step": 3550
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"epoch": 2.126325220247872,
|
2522 |
+
"grad_norm": 0.044879212975502014,
|
2523 |
+
"learning_rate": 1.8942018115290063e-05,
|
2524 |
+
"loss": 1.4896,
|
2525 |
+
"step": 3560
|
2526 |
+
},
|
2527 |
+
{
|
2528 |
+
"epoch": 2.1322980439002537,
|
2529 |
+
"grad_norm": 0.04508794844150543,
|
2530 |
+
"learning_rate": 1.8706104709024715e-05,
|
2531 |
+
"loss": 1.4915,
|
2532 |
+
"step": 3570
|
2533 |
+
},
|
2534 |
+
{
|
2535 |
+
"epoch": 2.1382708675526354,
|
2536 |
+
"grad_norm": 0.06577686965465546,
|
2537 |
+
"learning_rate": 1.8471220428468745e-05,
|
2538 |
+
"loss": 1.4981,
|
2539 |
+
"step": 3580
|
2540 |
+
},
|
2541 |
+
{
|
2542 |
+
"epoch": 2.144243691205017,
|
2543 |
+
"grad_norm": 0.03995177894830704,
|
2544 |
+
"learning_rate": 1.823737662548843e-05,
|
2545 |
+
"loss": 1.4973,
|
2546 |
+
"step": 3590
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 2.150216514857399,
|
2550 |
+
"grad_norm": 0.06114717572927475,
|
2551 |
+
"learning_rate": 1.800458460166417e-05,
|
2552 |
+
"loss": 1.4942,
|
2553 |
+
"step": 3600
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 2.1561893385097806,
|
2557 |
+
"grad_norm": 0.04745366424322128,
|
2558 |
+
"learning_rate": 1.7772855607744284e-05,
|
2559 |
+
"loss": 1.5004,
|
2560 |
+
"step": 3610
|
2561 |
+
},
|
2562 |
+
{
|
2563 |
+
"epoch": 2.1621621621621623,
|
2564 |
+
"grad_norm": 0.045220714062452316,
|
2565 |
+
"learning_rate": 1.7542200843101267e-05,
|
2566 |
+
"loss": 1.494,
|
2567 |
+
"step": 3620
|
2568 |
+
},
|
2569 |
+
{
|
2570 |
+
"epoch": 2.168134985814544,
|
2571 |
+
"grad_norm": 0.04914199188351631,
|
2572 |
+
"learning_rate": 1.7312631455190528e-05,
|
2573 |
+
"loss": 1.491,
|
2574 |
+
"step": 3630
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 2.1741078094669257,
|
2578 |
+
"grad_norm": 0.044854309409856796,
|
2579 |
+
"learning_rate": 1.708415853901166e-05,
|
2580 |
+
"loss": 1.4974,
|
2581 |
+
"step": 3640
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 2.180080633119307,
|
2585 |
+
"grad_norm": 0.0511915348470211,
|
2586 |
+
"learning_rate": 1.6856793136572155e-05,
|
2587 |
+
"loss": 1.4978,
|
2588 |
+
"step": 3650
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 2.1860534567716887,
|
2592 |
+
"grad_norm": 0.052235160022974014,
|
2593 |
+
"learning_rate": 1.6630546236353833e-05,
|
2594 |
+
"loss": 1.4884,
|
2595 |
+
"step": 3660
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 2.1920262804240704,
|
2599 |
+
"grad_norm": 0.03959416225552559,
|
2600 |
+
"learning_rate": 1.6405428772781724e-05,
|
2601 |
+
"loss": 1.4897,
|
2602 |
+
"step": 3670
|
2603 |
+
},
|
2604 |
+
{
|
2605 |
+
"epoch": 2.197999104076452,
|
2606 |
+
"grad_norm": 0.04642707481980324,
|
2607 |
+
"learning_rate": 1.618145162569563e-05,
|
2608 |
+
"loss": 1.489,
|
2609 |
+
"step": 3680
|
2610 |
+
},
|
2611 |
+
{
|
2612 |
+
"epoch": 2.203971927728834,
|
2613 |
+
"grad_norm": 0.05590491741895676,
|
2614 |
+
"learning_rate": 1.5958625619824286e-05,
|
2615 |
+
"loss": 1.4946,
|
2616 |
+
"step": 3690
|
2617 |
+
},
|
2618 |
+
{
|
2619 |
+
"epoch": 2.2099447513812156,
|
2620 |
+
"grad_norm": 0.050484009087085724,
|
2621 |
+
"learning_rate": 1.5736961524262232e-05,
|
2622 |
+
"loss": 1.5011,
|
2623 |
+
"step": 3700
|
2624 |
+
},
|
2625 |
+
{
|
2626 |
+
"epoch": 2.2159175750335973,
|
2627 |
+
"grad_norm": 0.04109204187989235,
|
2628 |
+
"learning_rate": 1.551647005194932e-05,
|
2629 |
+
"loss": 1.4993,
|
2630 |
+
"step": 3710
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 2.2218903986859786,
|
2634 |
+
"grad_norm": 0.04570942744612694,
|
2635 |
+
"learning_rate": 1.5297161859152986e-05,
|
2636 |
+
"loss": 1.491,
|
2637 |
+
"step": 3720
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 2.2278632223383603,
|
2641 |
+
"grad_norm": 0.041420578956604004,
|
2642 |
+
"learning_rate": 1.5079047544953227e-05,
|
2643 |
+
"loss": 1.4874,
|
2644 |
+
"step": 3730
|
2645 |
+
},
|
2646 |
+
{
|
2647 |
+
"epoch": 2.233836045990742,
|
2648 |
+
"grad_norm": 0.04918381944298744,
|
2649 |
+
"learning_rate": 1.486213765073032e-05,
|
2650 |
+
"loss": 1.4939,
|
2651 |
+
"step": 3740
|
2652 |
+
},
|
2653 |
+
{
|
2654 |
+
"epoch": 2.2398088696431238,
|
2655 |
+
"grad_norm": 0.05086056888103485,
|
2656 |
+
"learning_rate": 1.4646442659655425e-05,
|
2657 |
+
"loss": 1.4992,
|
2658 |
+
"step": 3750
|
2659 |
+
},
|
2660 |
+
{
|
2661 |
+
"epoch": 2.2457816932955055,
|
2662 |
+
"grad_norm": 0.061345502734184265,
|
2663 |
+
"learning_rate": 1.4431972996183894e-05,
|
2664 |
+
"loss": 1.4935,
|
2665 |
+
"step": 3760
|
2666 |
+
},
|
2667 |
+
{
|
2668 |
+
"epoch": 2.251754516947887,
|
2669 |
+
"grad_norm": 0.03802775219082832,
|
2670 |
+
"learning_rate": 1.4218739025551469e-05,
|
2671 |
+
"loss": 1.487,
|
2672 |
+
"step": 3770
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 2.257727340600269,
|
2676 |
+
"grad_norm": 0.039830368012189865,
|
2677 |
+
"learning_rate": 1.4006751053273338e-05,
|
2678 |
+
"loss": 1.4943,
|
2679 |
+
"step": 3780
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 2.2637001642526506,
|
2683 |
+
"grad_norm": 0.04441362991929054,
|
2684 |
+
"learning_rate": 1.3796019324646062e-05,
|
2685 |
+
"loss": 1.4907,
|
2686 |
+
"step": 3790
|
2687 |
+
},
|
2688 |
+
{
|
2689 |
+
"epoch": 2.269672987905032,
|
2690 |
+
"grad_norm": 0.04267200455069542,
|
2691 |
+
"learning_rate": 1.358655402425245e-05,
|
2692 |
+
"loss": 1.4905,
|
2693 |
+
"step": 3800
|
2694 |
+
},
|
2695 |
+
{
|
2696 |
+
"epoch": 2.2756458115574136,
|
2697 |
+
"grad_norm": 0.04467471316456795,
|
2698 |
+
"learning_rate": 1.3378365275469322e-05,
|
2699 |
+
"loss": 1.4865,
|
2700 |
+
"step": 3810
|
2701 |
+
},
|
2702 |
+
{
|
2703 |
+
"epoch": 2.2816186352097954,
|
2704 |
+
"grad_norm": 0.04877958446741104,
|
2705 |
+
"learning_rate": 1.3171463139978222e-05,
|
2706 |
+
"loss": 1.4978,
|
2707 |
+
"step": 3820
|
2708 |
+
},
|
2709 |
+
{
|
2710 |
+
"epoch": 2.287591458862177,
|
2711 |
+
"grad_norm": 0.04458734765648842,
|
2712 |
+
"learning_rate": 1.2965857617279216e-05,
|
2713 |
+
"loss": 1.4931,
|
2714 |
+
"step": 3830
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 2.293564282514559,
|
2718 |
+
"grad_norm": 0.043027278035879135,
|
2719 |
+
"learning_rate": 1.2761558644207547e-05,
|
2720 |
+
"loss": 1.495,
|
2721 |
+
"step": 3840
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 2.2995371061669405,
|
2725 |
+
"grad_norm": 0.03808119520545006,
|
2726 |
+
"learning_rate": 1.2558576094453435e-05,
|
2727 |
+
"loss": 1.4922,
|
2728 |
+
"step": 3850
|
2729 |
+
},
|
2730 |
+
{
|
2731 |
+
"epoch": 2.3055099298193222,
|
2732 |
+
"grad_norm": 0.038997333496809006,
|
2733 |
+
"learning_rate": 1.2356919778084867e-05,
|
2734 |
+
"loss": 1.4915,
|
2735 |
+
"step": 3860
|
2736 |
+
},
|
2737 |
+
{
|
2738 |
+
"epoch": 2.3114827534717035,
|
2739 |
+
"grad_norm": 0.04020654410123825,
|
2740 |
+
"learning_rate": 1.2156599441073488e-05,
|
2741 |
+
"loss": 1.4874,
|
2742 |
+
"step": 3870
|
2743 |
+
},
|
2744 |
+
{
|
2745 |
+
"epoch": 2.3174555771240852,
|
2746 |
+
"grad_norm": 0.04891055077314377,
|
2747 |
+
"learning_rate": 1.1957624764823566e-05,
|
2748 |
+
"loss": 1.5016,
|
2749 |
+
"step": 3880
|
2750 |
+
},
|
2751 |
+
{
|
2752 |
+
"epoch": 2.323428400776467,
|
2753 |
+
"grad_norm": 0.046524520963430405,
|
2754 |
+
"learning_rate": 1.176000536570412e-05,
|
2755 |
+
"loss": 1.4928,
|
2756 |
+
"step": 3890
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 2.3294012244288487,
|
2760 |
+
"grad_norm": 0.04302162304520607,
|
2761 |
+
"learning_rate": 1.1563750794584156e-05,
|
2762 |
+
"loss": 1.4905,
|
2763 |
+
"step": 3900
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 2.3353740480812304,
|
2767 |
+
"grad_norm": 0.046545591205358505,
|
2768 |
+
"learning_rate": 1.1368870536371036e-05,
|
2769 |
+
"loss": 1.4911,
|
2770 |
+
"step": 3910
|
2771 |
+
},
|
2772 |
+
{
|
2773 |
+
"epoch": 2.341346871733612,
|
2774 |
+
"grad_norm": 0.04680660367012024,
|
2775 |
+
"learning_rate": 1.1175374009552159e-05,
|
2776 |
+
"loss": 1.4832,
|
2777 |
+
"step": 3920
|
2778 |
+
},
|
2779 |
+
{
|
2780 |
+
"epoch": 2.347319695385994,
|
2781 |
+
"grad_norm": 0.04679818078875542,
|
2782 |
+
"learning_rate": 1.0983270565739668e-05,
|
2783 |
+
"loss": 1.4892,
|
2784 |
+
"step": 3930
|
2785 |
+
},
|
2786 |
+
{
|
2787 |
+
"epoch": 2.3532925190383756,
|
2788 |
+
"grad_norm": 0.04409361630678177,
|
2789 |
+
"learning_rate": 1.0792569489218598e-05,
|
2790 |
+
"loss": 1.4907,
|
2791 |
+
"step": 3940
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"epoch": 2.3592653426907573,
|
2795 |
+
"grad_norm": 0.04122375324368477,
|
2796 |
+
"learning_rate": 1.0603279996498089e-05,
|
2797 |
+
"loss": 1.4936,
|
2798 |
+
"step": 3950
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 2.3652381663431385,
|
2802 |
+
"grad_norm": 0.045084912329912186,
|
2803 |
+
"learning_rate": 1.0415411235865979e-05,
|
2804 |
+
"loss": 1.4852,
|
2805 |
+
"step": 3960
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 2.3712109899955203,
|
2809 |
+
"grad_norm": 0.04110685735940933,
|
2810 |
+
"learning_rate": 1.0228972286946695e-05,
|
2811 |
+
"loss": 1.494,
|
2812 |
+
"step": 3970
|
2813 |
+
},
|
2814 |
+
{
|
2815 |
+
"epoch": 2.377183813647902,
|
2816 |
+
"grad_norm": 0.04527169466018677,
|
2817 |
+
"learning_rate": 1.0043972160262392e-05,
|
2818 |
+
"loss": 1.4955,
|
2819 |
+
"step": 3980
|
2820 |
+
},
|
2821 |
+
{
|
2822 |
+
"epoch": 2.3831566373002837,
|
2823 |
+
"grad_norm": 0.04808187112212181,
|
2824 |
+
"learning_rate": 9.860419796797527e-06,
|
2825 |
+
"loss": 1.4858,
|
2826 |
+
"step": 3990
|
2827 |
+
},
|
2828 |
+
{
|
2829 |
+
"epoch": 2.3891294609526654,
|
2830 |
+
"grad_norm": 0.03969137370586395,
|
2831 |
+
"learning_rate": 9.678324067566716e-06,
|
2832 |
+
"loss": 1.497,
|
2833 |
+
"step": 4000
|
2834 |
+
},
|
2835 |
+
{
|
2836 |
+
"epoch": 2.3891294609526654,
|
2837 |
+
"eval_loss": 1.4980565309524536,
|
2838 |
+
"eval_runtime": 20.0226,
|
2839 |
+
"eval_samples_per_second": 1729.697,
|
2840 |
+
"eval_steps_per_second": 13.535,
|
2841 |
+
"step": 4000
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 2.395102284605047,
|
2845 |
+
"grad_norm": 0.039191678166389465,
|
2846 |
+
"learning_rate": 9.497693773185985e-06,
|
2847 |
+
"loss": 1.491,
|
2848 |
+
"step": 4010
|
2849 |
+
},
|
2850 |
+
{
|
2851 |
+
"epoch": 2.401075108257429,
|
2852 |
+
"grad_norm": 0.04326602816581726,
|
2853 |
+
"learning_rate": 9.318537643447488e-06,
|
2854 |
+
"loss": 1.4897,
|
2855 |
+
"step": 4020
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"epoch": 2.40704793190981,
|
2859 |
+
"grad_norm": 0.04062432423233986,
|
2860 |
+
"learning_rate": 9.140864336897559e-06,
|
2861 |
+
"loss": 1.4834,
|
2862 |
+
"step": 4030
|
2863 |
+
},
|
2864 |
+
{
|
2865 |
+
"epoch": 2.413020755562192,
|
2866 |
+
"grad_norm": 0.043511949479579926,
|
2867 |
+
"learning_rate": 8.964682440418272e-06,
|
2868 |
+
"loss": 1.4899,
|
2869 |
+
"step": 4040
|
2870 |
+
},
|
2871 |
+
{
|
2872 |
+
"epoch": 2.4189935792145736,
|
2873 |
+
"grad_norm": 0.041364822536706924,
|
2874 |
+
"learning_rate": 8.79000046881242e-06,
|
2875 |
+
"loss": 1.4876,
|
2876 |
+
"step": 4050
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 2.4249664028669553,
|
2880 |
+
"grad_norm": 0.03720170632004738,
|
2881 |
+
"learning_rate": 8.61682686439202e-06,
|
2882 |
+
"loss": 1.4926,
|
2883 |
+
"step": 4060
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 2.430939226519337,
|
2887 |
+
"grad_norm": 0.04620780423283577,
|
2888 |
+
"learning_rate": 8.44516999657027e-06,
|
2889 |
+
"loss": 1.4929,
|
2890 |
+
"step": 4070
|
2891 |
+
},
|
2892 |
+
{
|
2893 |
+
"epoch": 2.4369120501717187,
|
2894 |
+
"grad_norm": 0.03785783797502518,
|
2895 |
+
"learning_rate": 8.275038161457094e-06,
|
2896 |
+
"loss": 1.4917,
|
2897 |
+
"step": 4080
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 2.4428848738241005,
|
2901 |
+
"grad_norm": 0.047655072063207626,
|
2902 |
+
"learning_rate": 8.106439581458177e-06,
|
2903 |
+
"loss": 1.4923,
|
2904 |
+
"step": 4090
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 2.448857697476482,
|
2908 |
+
"grad_norm": 0.04838723689317703,
|
2909 |
+
"learning_rate": 7.939382404877545e-06,
|
2910 |
+
"loss": 1.4902,
|
2911 |
+
"step": 4100
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 2.454830521128864,
|
2915 |
+
"grad_norm": 0.0498916357755661,
|
2916 |
+
"learning_rate": 7.773874705523826e-06,
|
2917 |
+
"loss": 1.4846,
|
2918 |
+
"step": 4110
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 2.460803344781245,
|
2922 |
+
"grad_norm": 0.044865112751722336,
|
2923 |
+
"learning_rate": 7.609924482320013e-06,
|
2924 |
+
"loss": 1.4867,
|
2925 |
+
"step": 4120
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 2.466776168433627,
|
2929 |
+
"grad_norm": 0.041775912046432495,
|
2930 |
+
"learning_rate": 7.447539658916869e-06,
|
2931 |
+
"loss": 1.4869,
|
2932 |
+
"step": 4130
|
2933 |
+
},
|
2934 |
+
{
|
2935 |
+
"epoch": 2.4727489920860086,
|
2936 |
+
"grad_norm": 0.03888450190424919,
|
2937 |
+
"learning_rate": 7.286728083309995e-06,
|
2938 |
+
"loss": 1.4824,
|
2939 |
+
"step": 4140
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 2.4787218157383903,
|
2943 |
+
"grad_norm": 0.05169163644313812,
|
2944 |
+
"learning_rate": 7.127497527460541e-06,
|
2945 |
+
"loss": 1.4856,
|
2946 |
+
"step": 4150
|
2947 |
+
},
|
2948 |
+
{
|
2949 |
+
"epoch": 2.484694639390772,
|
2950 |
+
"grad_norm": 0.04095705598592758,
|
2951 |
+
"learning_rate": 6.969855686919573e-06,
|
2952 |
+
"loss": 1.4899,
|
2953 |
+
"step": 4160
|
2954 |
+
},
|
2955 |
+
{
|
2956 |
+
"epoch": 2.490667463043154,
|
2957 |
+
"grad_norm": 0.0429367758333683,
|
2958 |
+
"learning_rate": 6.81381018045618e-06,
|
2959 |
+
"loss": 1.4848,
|
2960 |
+
"step": 4170
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 2.4966402866955355,
|
2964 |
+
"grad_norm": 0.04392432048916817,
|
2965 |
+
"learning_rate": 6.659368549689209e-06,
|
2966 |
+
"loss": 1.4832,
|
2967 |
+
"step": 4180
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 2.502613110347917,
|
2971 |
+
"grad_norm": 0.04673699662089348,
|
2972 |
+
"learning_rate": 6.506538258722859e-06,
|
2973 |
+
"loss": 1.4855,
|
2974 |
+
"step": 4190
|
2975 |
+
},
|
2976 |
+
{
|
2977 |
+
"epoch": 2.5085859340002985,
|
2978 |
+
"grad_norm": 0.04074994474649429,
|
2979 |
+
"learning_rate": 6.355326693785868e-06,
|
2980 |
+
"loss": 1.4789,
|
2981 |
+
"step": 4200
|
2982 |
+
},
|
2983 |
+
{
|
2984 |
+
"epoch": 2.51455875765268,
|
2985 |
+
"grad_norm": 0.035382091999053955,
|
2986 |
+
"learning_rate": 6.2057411628745875e-06,
|
2987 |
+
"loss": 1.4862,
|
2988 |
+
"step": 4210
|
2989 |
+
},
|
2990 |
+
{
|
2991 |
+
"epoch": 2.520531581305062,
|
2992 |
+
"grad_norm": 0.03829929605126381,
|
2993 |
+
"learning_rate": 6.057788895399781e-06,
|
2994 |
+
"loss": 1.4852,
|
2995 |
+
"step": 4220
|
2996 |
+
},
|
2997 |
+
{
|
2998 |
+
"epoch": 2.5265044049574437,
|
2999 |
+
"grad_norm": 0.04219154641032219,
|
3000 |
+
"learning_rate": 5.9114770418372015e-06,
|
3001 |
+
"loss": 1.4865,
|
3002 |
+
"step": 4230
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 2.5324772286098254,
|
3006 |
+
"grad_norm": 0.04591584950685501,
|
3007 |
+
"learning_rate": 5.7668126733820476e-06,
|
3008 |
+
"loss": 1.4737,
|
3009 |
+
"step": 4240
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 2.538450052262207,
|
3013 |
+
"grad_norm": 0.045854389667510986,
|
3014 |
+
"learning_rate": 5.623802781607204e-06,
|
3015 |
+
"loss": 1.4872,
|
3016 |
+
"step": 4250
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 2.544422875914589,
|
3020 |
+
"grad_norm": 0.04153481870889664,
|
3021 |
+
"learning_rate": 5.48245427812534e-06,
|
3022 |
+
"loss": 1.4806,
|
3023 |
+
"step": 4260
|
3024 |
+
},
|
3025 |
+
{
|
3026 |
+
"epoch": 2.5503956995669705,
|
3027 |
+
"grad_norm": 0.03822470083832741,
|
3028 |
+
"learning_rate": 5.342773994254842e-06,
|
3029 |
+
"loss": 1.4792,
|
3030 |
+
"step": 4270
|
3031 |
+
},
|
3032 |
+
{
|
3033 |
+
"epoch": 2.556368523219352,
|
3034 |
+
"grad_norm": 0.03870686888694763,
|
3035 |
+
"learning_rate": 5.204768680689727e-06,
|
3036 |
+
"loss": 1.4771,
|
3037 |
+
"step": 4280
|
3038 |
+
},
|
3039 |
+
{
|
3040 |
+
"epoch": 2.5623413468717335,
|
3041 |
+
"grad_norm": 0.05567542836070061,
|
3042 |
+
"learning_rate": 5.068445007173331e-06,
|
3043 |
+
"loss": 1.4812,
|
3044 |
+
"step": 4290
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 2.5683141705241153,
|
3048 |
+
"grad_norm": 0.03914303705096245,
|
3049 |
+
"learning_rate": 4.933809562175982e-06,
|
3050 |
+
"loss": 1.4952,
|
3051 |
+
"step": 4300
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 2.574286994176497,
|
3055 |
+
"grad_norm": 0.04728810861706734,
|
3056 |
+
"learning_rate": 4.800868852576561e-06,
|
3057 |
+
"loss": 1.4813,
|
3058 |
+
"step": 4310
|
3059 |
+
},
|
3060 |
+
{
|
3061 |
+
"epoch": 2.5802598178288787,
|
3062 |
+
"grad_norm": 0.04394581541419029,
|
3063 |
+
"learning_rate": 4.669629303348066e-06,
|
3064 |
+
"loss": 1.4779,
|
3065 |
+
"step": 4320
|
3066 |
+
},
|
3067 |
+
{
|
3068 |
+
"epoch": 2.5862326414812604,
|
3069 |
+
"grad_norm": 0.042139682918787,
|
3070 |
+
"learning_rate": 4.540097257247062e-06,
|
3071 |
+
"loss": 1.4847,
|
3072 |
+
"step": 4330
|
3073 |
+
},
|
3074 |
+
{
|
3075 |
+
"epoch": 2.5922054651336417,
|
3076 |
+
"grad_norm": 0.04580564424395561,
|
3077 |
+
"learning_rate": 4.412278974507151e-06,
|
3078 |
+
"loss": 1.4767,
|
3079 |
+
"step": 4340
|
3080 |
+
},
|
3081 |
+
{
|
3082 |
+
"epoch": 2.5981782887860234,
|
3083 |
+
"grad_norm": 0.03395635262131691,
|
3084 |
+
"learning_rate": 4.286180632536421e-06,
|
3085 |
+
"loss": 1.4871,
|
3086 |
+
"step": 4350
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 2.604151112438405,
|
3090 |
+
"grad_norm": 0.04606311395764351,
|
3091 |
+
"learning_rate": 4.161808325618886e-06,
|
3092 |
+
"loss": 1.4865,
|
3093 |
+
"step": 4360
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 2.610123936090787,
|
3097 |
+
"grad_norm": 0.046741172671318054,
|
3098 |
+
"learning_rate": 4.039168064619938e-06,
|
3099 |
+
"loss": 1.4896,
|
3100 |
+
"step": 4370
|
3101 |
+
},
|
3102 |
+
{
|
3103 |
+
"epoch": 2.6160967597431686,
|
3104 |
+
"grad_norm": 0.04130960628390312,
|
3105 |
+
"learning_rate": 3.918265776695891e-06,
|
3106 |
+
"loss": 1.4837,
|
3107 |
+
"step": 4380
|
3108 |
+
},
|
3109 |
+
{
|
3110 |
+
"epoch": 2.6220695833955503,
|
3111 |
+
"grad_norm": 0.043055951595306396,
|
3112 |
+
"learning_rate": 3.7991073050074678e-06,
|
3113 |
+
"loss": 1.4841,
|
3114 |
+
"step": 4390
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 2.628042407047932,
|
3118 |
+
"grad_norm": 0.04418269917368889,
|
3119 |
+
"learning_rate": 3.6816984084374485e-06,
|
3120 |
+
"loss": 1.4831,
|
3121 |
+
"step": 4400
|
3122 |
+
},
|
3123 |
+
{
|
3124 |
+
"epoch": 2.6340152307003137,
|
3125 |
+
"grad_norm": 0.036886971443891525,
|
3126 |
+
"learning_rate": 3.5660447613123086e-06,
|
3127 |
+
"loss": 1.4892,
|
3128 |
+
"step": 4410
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 2.6399880543526955,
|
3132 |
+
"grad_norm": 0.04421091824769974,
|
3133 |
+
"learning_rate": 3.452151953128007e-06,
|
3134 |
+
"loss": 1.4848,
|
3135 |
+
"step": 4420
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 2.645960878005077,
|
3139 |
+
"grad_norm": 0.042877208441495895,
|
3140 |
+
"learning_rate": 3.3400254882798435e-06,
|
3141 |
+
"loss": 1.4888,
|
3142 |
+
"step": 4430
|
3143 |
+
},
|
3144 |
+
{
|
3145 |
+
"epoch": 2.6519337016574585,
|
3146 |
+
"grad_norm": 0.04234934598207474,
|
3147 |
+
"learning_rate": 3.2296707857964125e-06,
|
3148 |
+
"loss": 1.4796,
|
3149 |
+
"step": 4440
|
3150 |
+
},
|
3151 |
+
{
|
3152 |
+
"epoch": 2.65790652530984,
|
3153 |
+
"grad_norm": 0.035217370837926865,
|
3154 |
+
"learning_rate": 3.121093179077739e-06,
|
3155 |
+
"loss": 1.481,
|
3156 |
+
"step": 4450
|
3157 |
+
},
|
3158 |
+
{
|
3159 |
+
"epoch": 2.663879348962222,
|
3160 |
+
"grad_norm": 0.040508221834897995,
|
3161 |
+
"learning_rate": 3.0142979156374806e-06,
|
3162 |
+
"loss": 1.4819,
|
3163 |
+
"step": 4460
|
3164 |
+
},
|
3165 |
+
{
|
3166 |
+
"epoch": 2.6698521726146036,
|
3167 |
+
"grad_norm": 0.041981033980846405,
|
3168 |
+
"learning_rate": 2.9092901568493446e-06,
|
3169 |
+
"loss": 1.4804,
|
3170 |
+
"step": 4470
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 2.6758249962669853,
|
3174 |
+
"grad_norm": 0.03790983185172081,
|
3175 |
+
"learning_rate": 2.80607497769763e-06,
|
3176 |
+
"loss": 1.4894,
|
3177 |
+
"step": 4480
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 2.6817978199193666,
|
3181 |
+
"grad_norm": 0.038940299302339554,
|
3182 |
+
"learning_rate": 2.70465736653196e-06,
|
3183 |
+
"loss": 1.4827,
|
3184 |
+
"step": 4490
|
3185 |
+
},
|
3186 |
+
{
|
3187 |
+
"epoch": 2.6877706435717483,
|
3188 |
+
"grad_norm": 0.04031272605061531,
|
3189 |
+
"learning_rate": 2.605042224826182e-06,
|
3190 |
+
"loss": 1.4845,
|
3191 |
+
"step": 4500
|
3192 |
+
}
|
3193 |
+
],
|
3194 |
+
"logging_steps": 10,
|
3195 |
+
"max_steps": 5022,
|
3196 |
+
"num_input_tokens_seen": 0,
|
3197 |
+
"num_train_epochs": 3,
|
3198 |
+
"save_steps": 500,
|
3199 |
+
"stateful_callbacks": {
|
3200 |
+
"TrainerControl": {
|
3201 |
+
"args": {
|
3202 |
+
"should_epoch_stop": false,
|
3203 |
+
"should_evaluate": false,
|
3204 |
+
"should_log": false,
|
3205 |
+
"should_save": true,
|
3206 |
+
"should_training_stop": false
|
3207 |
+
},
|
3208 |
+
"attributes": {}
|
3209 |
+
}
|
3210 |
+
},
|
3211 |
+
"total_flos": 1.9327446823064306e+19,
|
3212 |
+
"train_batch_size": 64,
|
3213 |
+
"trial_name": null,
|
3214 |
+
"trial_params": null
|
3215 |
+
}
|
checkpoint-4500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ab0d85bb1f90cdb54e5a3d9359ec0f6a3cdbed2af9fc2a0e31e87697e50efa4
|
3 |
+
size 6712
|
checkpoint-4500/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-579/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/ddn/yrm/model/MMfreeLM-370M",
|
3 |
+
"architectures": [
|
4 |
+
"HGRNBitForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_mode": "fused_recurrent",
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"conv_size": 4,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"expand_ratio": 1,
|
11 |
+
"fuse_cross_entropy": true,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_ratio": 4,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": null,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "hgrn_bit",
|
19 |
+
"num_heads": 1,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"rms_norm_eps": 1e-06,
|
22 |
+
"share_conv_kernel": true,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.45.2",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_lower_bound": true,
|
28 |
+
"use_short_conv": false,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|