update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: berturk-keyword-discriminator
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# berturk-keyword-discriminator
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4196
|
23 |
+
- Precision: 0.6729
|
24 |
+
- Recall: 0.6904
|
25 |
+
- Accuracy: 0.9163
|
26 |
+
- F1: 0.6815
|
27 |
+
- Ent/precision: 0.6776
|
28 |
+
- Ent/accuracy: 0.7365
|
29 |
+
- Ent/f1: 0.7058
|
30 |
+
- Con/precision: 0.6640
|
31 |
+
- Con/accuracy: 0.6151
|
32 |
+
- Con/f1: 0.6386
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 2e-05
|
52 |
+
- train_batch_size: 16
|
53 |
+
- eval_batch_size: 16
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 8
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | Ent/precision | Ent/accuracy | Ent/f1 | Con/precision | Con/accuracy | Con/f1 |
|
63 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|:-------------:|:------------:|:------:|:-------------:|:------------:|:------:|
|
64 |
+
| 0.1899 | 1.0 | 1875 | 0.1927 | 0.6330 | 0.6682 | 0.9163 | 0.6502 | 0.6283 | 0.7398 | 0.6795 | 0.6438 | 0.5513 | 0.5940 |
|
65 |
+
| 0.137 | 2.0 | 3750 | 0.1988 | 0.6405 | 0.6959 | 0.9160 | 0.6671 | 0.6461 | 0.7475 | 0.6931 | 0.6297 | 0.6116 | 0.6205 |
|
66 |
+
| 0.101 | 3.0 | 5625 | 0.2375 | 0.6494 | 0.7188 | 0.9173 | 0.6824 | 0.6497 | 0.7743 | 0.7066 | 0.6488 | 0.6281 | 0.6383 |
|
67 |
+
| 0.0767 | 4.0 | 7500 | 0.2699 | 0.6533 | 0.7188 | 0.9154 | 0.6845 | 0.6575 | 0.7741 | 0.7111 | 0.6449 | 0.6285 | 0.6366 |
|
68 |
+
| 0.057 | 5.0 | 9375 | 0.3188 | 0.6696 | 0.6914 | 0.9163 | 0.6803 | 0.6790 | 0.7405 | 0.7084 | 0.6518 | 0.6112 | 0.6308 |
|
69 |
+
| 0.0423 | 6.0 | 11250 | 0.3646 | 0.6773 | 0.6846 | 0.9171 | 0.6809 | 0.6787 | 0.7388 | 0.7075 | 0.6746 | 0.5959 | 0.6328 |
|
70 |
+
| 0.0339 | 7.0 | 13125 | 0.4007 | 0.6711 | 0.6816 | 0.9151 | 0.6763 | 0.6782 | 0.7283 | 0.7023 | 0.6575 | 0.6055 | 0.6304 |
|
71 |
+
| 0.0282 | 8.0 | 15000 | 0.4196 | 0.6729 | 0.6904 | 0.9163 | 0.6815 | 0.6776 | 0.7365 | 0.7058 | 0.6640 | 0.6151 | 0.6386 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.19.2
|
77 |
+
- Pytorch 1.11.0+cu113
|
78 |
+
- Datasets 2.2.2
|
79 |
+
- Tokenizers 0.12.1
|