yam-peleg commited on
Commit
d896dc2
โ€ข
1 Parent(s): c5d36c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md CHANGED
@@ -2,4 +2,90 @@
2
  license: other
3
  license_name: gemma-terms-of-use
4
  license_link: https://ai.google.dev/gemma/terms
 
 
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: other
3
  license_name: gemma-terms-of-use
4
  license_link: https://ai.google.dev/gemma/terms
5
+ language:
6
+ - en
7
+ - he
8
+ library_name: transformers
9
  ---
10
+ # Hebrew-Gemma-11B
11
+
12
+ - **Base Model:** [Hebrew-Gemma-11B](yam-peleg/Hebrew-Gemma-11B)
13
+ - **Instruct Model:** [Hebrew-Gemma-11B-Instruct](yam-peleg/Hebrew-Gemma-11B-Instruct)
14
+
15
+ Hebrew-Gemma-11B is an open-source Large Language Model (LLM) is a hebrew/english pretrained generative text model with 11 billion parameters, based on the Gemma-7B architecture from Google.
16
+
17
+ It is continued pretrain of gemma-7b, extended to a larger scale and trained on 3B additional tokens of both English and Hebrew text data.
18
+
19
+ The resulting model Gemma-11B is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation.
20
+
21
+
22
+ ### Terms of Use
23
+
24
+ As an extention of Gemma-7B, this model is subject to the original license and terms of use by Google.
25
+
26
+ **Gemma-7B original Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
27
+
28
+ ### Usage
29
+
30
+ Below are some code snippets on how to get quickly started with running the model.
31
+
32
+ First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
33
+
34
+ ### Running on CPU
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModelForCausalLM
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
40
+ model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
41
+
42
+ input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
43
+ input_ids = tokenizer(input_text, return_tensors="pt")
44
+
45
+ outputs = model.generate(**input_ids)
46
+ print(tokenizer.decode(outputs[0]))
47
+ ```
48
+
49
+ ### Running on GPU
50
+
51
+ ```python
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+
54
+ tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
55
+ model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", device_map="auto")
56
+
57
+ input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
58
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
59
+
60
+ outputs = model.generate(**input_ids)
61
+ print(tokenizer.decode(outputs[0]))
62
+ ```
63
+
64
+ ### Running with 4-Bit precision
65
+
66
+ ```python
67
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B")
70
+ model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))
71
+
72
+ input_text = "ืฉืœื•ื! ืžื” ืฉืœื•ืžืš ื”ื™ื•ื?"
73
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
74
+
75
+ outputs = model.generate(**input_ids)
76
+ print(tokenizer.decode(outputs[0])
77
+ ```
78
+
79
+ ### Benchmark Results
80
+
81
+ - Coming Soon!
82
+
83
+
84
+ ### Notice
85
+
86
+ Hebrew-Gemma-11B is a pretrained base model and therefore does not have any moderation mechanisms.
87
+
88
+
89
+ ### Author
90
+
91
+ Trained by Yam Peleg.