SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir")
# Run inference
sentences = [
'Bagaimana tren ekspor teh Indonesia ke berbagai negara tahun 2008?',
'Ekspor Teh Menurut Negara Tujuan Utama, 2000-2015',
'Luas Kawasan Hutan dan Kawasan Konservasi Perairan Indonesia Berdasarkan Surat Keputusan Menteri Lingkungan Hidup dan Kehutanan, 2017-2022',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bps-statictable-ir
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3648 |
cosine_accuracy@5 | 0.6319 |
cosine_accuracy@10 | 0.7199 |
cosine_precision@1 | 0.3648 |
cosine_precision@5 | 0.159 |
cosine_precision@10 | 0.1088 |
cosine_recall@1 | 0.2757 |
cosine_recall@5 | 0.4928 |
cosine_recall@10 | 0.5744 |
cosine_ndcg@1 | 0.3648 |
cosine_ndcg@5 | 0.4404 |
cosine_ndcg@10 | 0.4644 |
cosine_mrr@1 | 0.3648 |
cosine_mrr@5 | 0.4639 |
cosine_mrr@10 | 0.4758 |
cosine_map@1 | 0.3648 |
cosine_map@5 | 0.3868 |
cosine_map@10 | 0.3942 |
Training Details
Training Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 training samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 18.53 tokens
- max: 37 tokens
- min: 4 tokens
- mean: 25.42 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.71 tokens
- max: 58 tokens
- Samples:
query pos neg Data pendapatan per kapita, bedakan per golongan rumah tangga (ribu rupiah), 2008
Rata-rata Jumlah Pendapatan perkapita Menurut Golongan Rumah Tangga (ribu rupiah), 2000, 2005, 2008
Ringkasan Neraca Arus Dana, Triwulan II, 2007, (Miliar Rupiah)
Berapa ribu ton impor Indonesia dari negara-negara utama tahun 2018?
Volume Impor Menurut Negara Asal Utama (Berat bersih:ribu ton), 2017-2023
Rata-Rata Pengeluaran Konsumsi per Kapita Menurut Golongan Rumah Tangga (ribu rupiah), 2000, 2005, dan 2008
Kredit dari lembaga keuangan non-bank 2000-2016
Pemberian Kredit oleh Lembaga-Lembaga Keuangan Lainnya (miliar rupiah), 2000-2016
Angka Partisipasi Sekolah (APS) Penduduk Umur 7-18 Tahun Menurut Klasifikasi Desa, Jenis Kelamin, dan Kelompok Umur, 2009-2023
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 evaluation samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 18.75 tokens
- max: 37 tokens
- min: 4 tokens
- mean: 25.35 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.44 tokens
- max: 58 tokens
- Samples:
query pos neg Bagaimana kebiasaan rumah tangga memisahkan sampah (mudah busuk vs tidak), per provinsi, 2021?
Persentase Rumah Tangga Menurut Provinsi dan Perlakuan Memilah Sampah Mudah Membusuk dan Tidak Mudah Membusuk, 2013-2014, 2021
Rata-Rata Upah/Gaji Bersih Sebulan (rupiah) Buruh/Karyawan/Pegawai menurut Provinsi dan Lapangan Pekerjaan Utama di 17 Sektor, 2023
Bagaimana rincian pinjaman investasi (hanya Rupiah) dari bank umum ke berbagai sektor ekonomi pada tahun 2016?
Pinjaman Investasi Bank-Bank Umum dalam Rupiah Menurut Sektor Ekonomi (miliar rupiah), 2000 - 2016
Ringkasan Neraca Arus Dana, Triwulan IV, 2009, (Miliar Rupiah)
Data rumah tangga per provinsi, adakah area serapan air? Ambil tahun 2013
Persentase Rumah Tangga Menurut Provinsi dan Keberadaan Area Resapan Air, 2013-2014
Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (9 x 9)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Logs
Epoch | Step | bps-statictable-ir_cosine_ndcg@10 |
---|---|---|
0 | 0 | 0.4644 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir
Dataset used to train yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir
Evaluation results
- Cosine Accuracy@1 on bps statictable irself-reported0.365
- Cosine Accuracy@5 on bps statictable irself-reported0.632
- Cosine Accuracy@10 on bps statictable irself-reported0.720
- Cosine Precision@1 on bps statictable irself-reported0.365
- Cosine Precision@5 on bps statictable irself-reported0.159
- Cosine Precision@10 on bps statictable irself-reported0.109
- Cosine Recall@1 on bps statictable irself-reported0.276
- Cosine Recall@5 on bps statictable irself-reported0.493
- Cosine Recall@10 on bps statictable irself-reported0.574
- Cosine Ndcg@1 on bps statictable irself-reported0.365