SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir")
# Run inference
sentences = [
    'Bagaimana tren ekspor teh Indonesia ke berbagai negara tahun 2008?',
    'Ekspor Teh Menurut Negara Tujuan Utama, 2000-2015',
    'Luas Kawasan Hutan dan Kawasan Konservasi Perairan Indonesia Berdasarkan Surat Keputusan Menteri Lingkungan Hidup dan Kehutanan, 2017-2022',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3648
cosine_accuracy@5 0.6319
cosine_accuracy@10 0.7199
cosine_precision@1 0.3648
cosine_precision@5 0.159
cosine_precision@10 0.1088
cosine_recall@1 0.2757
cosine_recall@5 0.4928
cosine_recall@10 0.5744
cosine_ndcg@1 0.3648
cosine_ndcg@5 0.4404
cosine_ndcg@10 0.4644
cosine_mrr@1 0.3648
cosine_mrr@5 0.4639
cosine_mrr@10 0.4758
cosine_map@1 0.3648
cosine_map@5 0.3868
cosine_map@10 0.3942

Training Details

Training Dataset

statictable-triplets-all

  • Dataset: statictable-triplets-all at 24979b4
  • Size: 967,831 training samples
  • Columns: query, pos, and neg
  • Approximate statistics based on the first 1000 samples:
    query pos neg
    type string string string
    details
    • min: 5 tokens
    • mean: 18.53 tokens
    • max: 37 tokens
    • min: 4 tokens
    • mean: 25.42 tokens
    • max: 58 tokens
    • min: 4 tokens
    • mean: 25.71 tokens
    • max: 58 tokens
  • Samples:
    query pos neg
    Data pendapatan per kapita, bedakan per golongan rumah tangga (ribu rupiah), 2008 Rata-rata Jumlah Pendapatan perkapita Menurut Golongan Rumah Tangga (ribu rupiah), 2000, 2005, 2008 Ringkasan Neraca Arus Dana, Triwulan II, 2007, (Miliar Rupiah)
    Berapa ribu ton impor Indonesia dari negara-negara utama tahun 2018? Volume Impor Menurut Negara Asal Utama (Berat bersih:ribu ton), 2017-2023 Rata-Rata Pengeluaran Konsumsi per Kapita Menurut Golongan Rumah Tangga (ribu rupiah), 2000, 2005, dan 2008
    Kredit dari lembaga keuangan non-bank 2000-2016 Pemberian Kredit oleh Lembaga-Lembaga Keuangan Lainnya (miliar rupiah), 2000-2016 Angka Partisipasi Sekolah (APS) Penduduk Umur 7-18 Tahun Menurut Klasifikasi Desa, Jenis Kelamin, dan Kelompok Umur, 2009-2023
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

statictable-triplets-all

  • Dataset: statictable-triplets-all at 24979b4
  • Size: 967,831 evaluation samples
  • Columns: query, pos, and neg
  • Approximate statistics based on the first 1000 samples:
    query pos neg
    type string string string
    details
    • min: 5 tokens
    • mean: 18.75 tokens
    • max: 37 tokens
    • min: 4 tokens
    • mean: 25.35 tokens
    • max: 58 tokens
    • min: 4 tokens
    • mean: 25.44 tokens
    • max: 58 tokens
  • Samples:
    query pos neg
    Bagaimana kebiasaan rumah tangga memisahkan sampah (mudah busuk vs tidak), per provinsi, 2021? Persentase Rumah Tangga Menurut Provinsi dan Perlakuan Memilah Sampah Mudah Membusuk dan Tidak Mudah Membusuk, 2013-2014, 2021 Rata-Rata Upah/Gaji Bersih Sebulan (rupiah) Buruh/Karyawan/Pegawai menurut Provinsi dan Lapangan Pekerjaan Utama di 17 Sektor, 2023
    Bagaimana rincian pinjaman investasi (hanya Rupiah) dari bank umum ke berbagai sektor ekonomi pada tahun 2016? Pinjaman Investasi Bank-Bank Umum dalam Rupiah Menurut Sektor Ekonomi (miliar rupiah), 2000 - 2016 Ringkasan Neraca Arus Dana, Triwulan IV, 2009, (Miliar Rupiah)
    Data rumah tangga per provinsi, adakah area serapan air? Ambil tahun 2013 Persentase Rumah Tangga Menurut Provinsi dan Keberadaan Area Resapan Air, 2013-2014 Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (9 x 9)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Logs

Epoch Step bps-statictable-ir_cosine_ndcg@10
0 0 0.4644

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.4.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir

Dataset used to train yahyaabd/paraphrase-multilingual-miniLM-L12-v2-mnrl-beir

Evaluation results