Add new SentenceTransformer model
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +646 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:967831
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: Gaji pekerja berdasarkan jenis pekerjaan dan umur, 2016
|
12 |
+
sentences:
|
13 |
+
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
|
14 |
+
dan Jenis Pekerjaan (Rupiah), 2016
|
15 |
+
- '[Seri 2010] PDRB Triwulanan Atas Dasar Harga Berlaku Menurut Lapangan Usaha di
|
16 |
+
Provinsi Seluruh Indonesia (Miliar Rupiah), 2010-2024'
|
17 |
+
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
|
18 |
+
yang Ditamatkan, 2019
|
19 |
+
- source_sentence: Ke negara mana saja ekspor tanaman obat Indonesia tahun 2018?
|
20 |
+
sentences:
|
21 |
+
- Jumlah Rumah Tangga Perikanan Tangkap Menurut Provinsi dan Jenis Penangkapan,
|
22 |
+
2000-2016
|
23 |
+
- Perolehan Suara dan Kursi Dewan Perwakilan Rakyat (DPR) Menurut Partai Politik
|
24 |
+
Hasil Pemilu Tahun 2009 dan 2014
|
25 |
+
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
|
26 |
+
2012-2023
|
27 |
+
- source_sentence: Negara asal impor soybean 2023
|
28 |
+
sentences:
|
29 |
+
- Ringkasan Neraca Arus Dana, Triwulan III, 2010, (Miliar Rupiah)
|
30 |
+
- Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Kelompok Umur
|
31 |
+
(ribu rupiah), 2018
|
32 |
+
- Impor Kedelai menurut Negara Asal Utama, 2017-2023
|
33 |
+
- source_sentence: Cek penghasilan bersih rata-rata yang didapat wiraswasta di Indonesia
|
34 |
+
tahun 2021, bedakan per provinsi dan ijazah terakhir
|
35 |
+
sentences:
|
36 |
+
- Rata-rata Pendapatan bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
|
37 |
+
Ditamatkan, 2021
|
38 |
+
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
|
39 |
+
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sumatera Selatan, 2018-2023
|
40 |
+
- Impor Daging Sejenis Lembu menurut Negara Asal Utama, 2018-2023
|
41 |
+
- source_sentence: Status pernikahan penduduk (10+) tiap provinsi, data 2012
|
42 |
+
sentences:
|
43 |
+
- Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
|
44 |
+
- Ekspor Batu Bara Menurut Negara Tujuan Utama, 2012-2023
|
45 |
+
- Persentase Penduduk Berumur 10 Tahun ke Atas menurut Provinsi, Jenis Kelamin,
|
46 |
+
dan Status Perkawinan, 2009-2018
|
47 |
+
datasets:
|
48 |
+
- yahyaabd/statictable-triplets-all
|
49 |
+
pipeline_tag: sentence-similarity
|
50 |
+
library_name: sentence-transformers
|
51 |
+
metrics:
|
52 |
+
- cosine_accuracy@1
|
53 |
+
- cosine_accuracy@3
|
54 |
+
- cosine_accuracy@5
|
55 |
+
- cosine_accuracy@10
|
56 |
+
- cosine_precision@1
|
57 |
+
- cosine_precision@3
|
58 |
+
- cosine_precision@5
|
59 |
+
- cosine_precision@10
|
60 |
+
- cosine_recall@1
|
61 |
+
- cosine_recall@3
|
62 |
+
- cosine_recall@5
|
63 |
+
- cosine_recall@10
|
64 |
+
- cosine_ndcg@10
|
65 |
+
- cosine_mrr@10
|
66 |
+
- cosine_map@100
|
67 |
+
model-index:
|
68 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
69 |
+
results:
|
70 |
+
- task:
|
71 |
+
type: information-retrieval
|
72 |
+
name: Information Retrieval
|
73 |
+
dataset:
|
74 |
+
name: bps statictable ir
|
75 |
+
type: bps-statictable-ir
|
76 |
+
metrics:
|
77 |
+
- type: cosine_accuracy@1
|
78 |
+
value: 0.8990228013029316
|
79 |
+
name: Cosine Accuracy@1
|
80 |
+
- type: cosine_accuracy@3
|
81 |
+
value: 0.9739413680781759
|
82 |
+
name: Cosine Accuracy@3
|
83 |
+
- type: cosine_accuracy@5
|
84 |
+
value: 0.9804560260586319
|
85 |
+
name: Cosine Accuracy@5
|
86 |
+
- type: cosine_accuracy@10
|
87 |
+
value: 0.9869706840390879
|
88 |
+
name: Cosine Accuracy@10
|
89 |
+
- type: cosine_precision@1
|
90 |
+
value: 0.8990228013029316
|
91 |
+
name: Cosine Precision@1
|
92 |
+
- type: cosine_precision@3
|
93 |
+
value: 0.3517915309446254
|
94 |
+
name: Cosine Precision@3
|
95 |
+
- type: cosine_precision@5
|
96 |
+
value: 0.2299674267100977
|
97 |
+
name: Cosine Precision@5
|
98 |
+
- type: cosine_precision@10
|
99 |
+
value: 0.13420195439739416
|
100 |
+
name: Cosine Precision@10
|
101 |
+
- type: cosine_recall@1
|
102 |
+
value: 0.7037534704802675
|
103 |
+
name: Cosine Recall@1
|
104 |
+
- type: cosine_recall@3
|
105 |
+
value: 0.777408879373005
|
106 |
+
name: Cosine Recall@3
|
107 |
+
- type: cosine_recall@5
|
108 |
+
value: 0.7896378239472596
|
109 |
+
name: Cosine Recall@5
|
110 |
+
- type: cosine_recall@10
|
111 |
+
value: 0.8147874661605627
|
112 |
+
name: Cosine Recall@10
|
113 |
+
- type: cosine_ndcg@10
|
114 |
+
value: 0.8242104501990923
|
115 |
+
name: Cosine Ndcg@10
|
116 |
+
- type: cosine_mrr@10
|
117 |
+
value: 0.9361834961997827
|
118 |
+
name: Cosine Mrr@10
|
119 |
+
- type: cosine_map@100
|
120 |
+
value: 0.7641191235697605
|
121 |
+
name: Cosine Map@100
|
122 |
+
---
|
123 |
+
|
124 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
125 |
+
|
126 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
127 |
+
|
128 |
+
## Model Details
|
129 |
+
|
130 |
+
### Model Description
|
131 |
+
- **Model Type:** Sentence Transformer
|
132 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
|
133 |
+
- **Maximum Sequence Length:** 128 tokens
|
134 |
+
- **Output Dimensionality:** 384 dimensions
|
135 |
+
- **Similarity Function:** Cosine Similarity
|
136 |
+
- **Training Dataset:**
|
137 |
+
- [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all)
|
138 |
+
<!-- - **Language:** Unknown -->
|
139 |
+
<!-- - **License:** Unknown -->
|
140 |
+
|
141 |
+
### Model Sources
|
142 |
+
|
143 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
144 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
145 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
146 |
+
|
147 |
+
### Full Model Architecture
|
148 |
+
|
149 |
+
```
|
150 |
+
SentenceTransformer(
|
151 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
152 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
153 |
+
)
|
154 |
+
```
|
155 |
+
|
156 |
+
## Usage
|
157 |
+
|
158 |
+
### Direct Usage (Sentence Transformers)
|
159 |
+
|
160 |
+
First install the Sentence Transformers library:
|
161 |
+
|
162 |
+
```bash
|
163 |
+
pip install -U sentence-transformers
|
164 |
+
```
|
165 |
+
|
166 |
+
Then you can load this model and run inference.
|
167 |
+
```python
|
168 |
+
from sentence_transformers import SentenceTransformer
|
169 |
+
|
170 |
+
# Download from the 🤗 Hub
|
171 |
+
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-2")
|
172 |
+
# Run inference
|
173 |
+
sentences = [
|
174 |
+
'Status pernikahan penduduk (10+) tiap provinsi, data 2012',
|
175 |
+
'Persentase Penduduk Berumur 10 Tahun ke Atas menurut Provinsi, Jenis Kelamin, dan Status Perkawinan, 2009-2018',
|
176 |
+
'Ekspor Batu Bara Menurut Negara Tujuan Utama, 2012-2023',
|
177 |
+
]
|
178 |
+
embeddings = model.encode(sentences)
|
179 |
+
print(embeddings.shape)
|
180 |
+
# [3, 384]
|
181 |
+
|
182 |
+
# Get the similarity scores for the embeddings
|
183 |
+
similarities = model.similarity(embeddings, embeddings)
|
184 |
+
print(similarities.shape)
|
185 |
+
# [3, 3]
|
186 |
+
```
|
187 |
+
|
188 |
+
<!--
|
189 |
+
### Direct Usage (Transformers)
|
190 |
+
|
191 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
192 |
+
|
193 |
+
</details>
|
194 |
+
-->
|
195 |
+
|
196 |
+
<!--
|
197 |
+
### Downstream Usage (Sentence Transformers)
|
198 |
+
|
199 |
+
You can finetune this model on your own dataset.
|
200 |
+
|
201 |
+
<details><summary>Click to expand</summary>
|
202 |
+
|
203 |
+
</details>
|
204 |
+
-->
|
205 |
+
|
206 |
+
<!--
|
207 |
+
### Out-of-Scope Use
|
208 |
+
|
209 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
210 |
+
-->
|
211 |
+
|
212 |
+
## Evaluation
|
213 |
+
|
214 |
+
### Metrics
|
215 |
+
|
216 |
+
#### Information Retrieval
|
217 |
+
|
218 |
+
* Dataset: `bps-statictable-ir`
|
219 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
220 |
+
|
221 |
+
| Metric | Value |
|
222 |
+
|:--------------------|:-----------|
|
223 |
+
| cosine_accuracy@1 | 0.899 |
|
224 |
+
| cosine_accuracy@3 | 0.9739 |
|
225 |
+
| cosine_accuracy@5 | 0.9805 |
|
226 |
+
| cosine_accuracy@10 | 0.987 |
|
227 |
+
| cosine_precision@1 | 0.899 |
|
228 |
+
| cosine_precision@3 | 0.3518 |
|
229 |
+
| cosine_precision@5 | 0.23 |
|
230 |
+
| cosine_precision@10 | 0.1342 |
|
231 |
+
| cosine_recall@1 | 0.7038 |
|
232 |
+
| cosine_recall@3 | 0.7774 |
|
233 |
+
| cosine_recall@5 | 0.7896 |
|
234 |
+
| cosine_recall@10 | 0.8148 |
|
235 |
+
| **cosine_ndcg@10** | **0.8242** |
|
236 |
+
| cosine_mrr@10 | 0.9362 |
|
237 |
+
| cosine_map@100 | 0.7641 |
|
238 |
+
|
239 |
+
<!--
|
240 |
+
## Bias, Risks and Limitations
|
241 |
+
|
242 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
243 |
+
-->
|
244 |
+
|
245 |
+
<!--
|
246 |
+
### Recommendations
|
247 |
+
|
248 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
249 |
+
-->
|
250 |
+
|
251 |
+
## Training Details
|
252 |
+
|
253 |
+
### Training Dataset
|
254 |
+
|
255 |
+
#### statictable-triplets-all
|
256 |
+
|
257 |
+
* Dataset: [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all) at [24979b4](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all/tree/24979b4f0d8269377aca975e20d52e69c3b5a030)
|
258 |
+
* Size: 967,831 training samples
|
259 |
+
* Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
|
260 |
+
* Approximate statistics based on the first 1000 samples:
|
261 |
+
| | query | pos | neg |
|
262 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
263 |
+
| type | string | string | string |
|
264 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 18.35 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.22 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.78 tokens</li><li>max: 58 tokens</li></ul> |
|
265 |
+
* Samples:
|
266 |
+
| query | pos | neg |
|
267 |
+
|:---------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|
|
268 |
+
| <code>Jumlah bank dan kantor bank di Indonesia, 2010-2017</code> | <code>Bank dan Kantor Bank, 2010-2017</code> | <code>Rata-Rata Pengeluaran per Kapita Sebulan Menurut Kelompok Barang (rupiah), 1998-2012</code> |
|
269 |
+
| <code>Konsumsi makanan mingguan per orang di Sulteng: beda tingkat pengeluaran (2021)</code> | <code>Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Selatan, 2018-2023</code> | <code>IHK, Upah Nominal, Indeks Upah Nominal dan Riil Buruh Industri Berstatus di bawah Mandor Menurut Wilayah, 2008-2014 (2007=100)</code> |
|
270 |
+
| <code>Impor semen Indonesia, negara asal utama, 2021</code> | <code>Impor Semen Menurut Negara Asal Utama, 2017-2023</code> | <code>Penerimaan dari Wisatawan Mancanegara Menurut Negara Tempat Tinggal (juta US$), 2000-2014</code> |
|
271 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
272 |
+
```json
|
273 |
+
{
|
274 |
+
"scale": 20.0,
|
275 |
+
"similarity_fct": "cos_sim"
|
276 |
+
}
|
277 |
+
```
|
278 |
+
|
279 |
+
### Evaluation Dataset
|
280 |
+
|
281 |
+
#### statictable-triplets-all
|
282 |
+
|
283 |
+
* Dataset: [statictable-triplets-all](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all) at [24979b4](https://huggingface.co/datasets/yahyaabd/statictable-triplets-all/tree/24979b4f0d8269377aca975e20d52e69c3b5a030)
|
284 |
+
* Size: 967,831 evaluation samples
|
285 |
+
* Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
|
286 |
+
* Approximate statistics based on the first 1000 samples:
|
287 |
+
| | query | pos | neg |
|
288 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
289 |
+
| type | string | string | string |
|
290 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 18.39 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.22 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.33 tokens</li><li>max: 58 tokens</li></ul> |
|
291 |
+
* Samples:
|
292 |
+
| query | pos | neg |
|
293 |
+
|:----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|
|
294 |
+
| <code>Bagaimana hubungan antara bidang pekerjaan utama dan pendidikan pekerja 15+ di minggu lalu (tahun 2016)?</code> | <code>Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut Lapangan Pekerjaan Utama dan Pendidikan Tertinggi yang Ditamatkan, 2008 - 2024</code> | <code>Bank dan Kantor Bank, 2010-2017</code> |
|
295 |
+
| <code>Tren indikator kondisi perumahan, 2001</code> | <code>Indikator Perumahan 1993-2023</code> | <code>Banyaknya Desa/Kelurahan Menurut Keberadaan Kelompok Pertokoan, Pasar, dan Kios Sarana Produksi Pertanian (Saprotan), 2014 & 2018</code> |
|
296 |
+
| <code>Gaji bersih rata-rata: Per pendidikan & lapangan kerja utama, Indonesia, 2021</code> | <code>Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan Lapangan Pekerjaan Utama, 2021</code> | <code>[Seri 2000] Laju Pertumbuhan Kumulatif PDB Menurut Lapangan Usaha (Persen), 2001-2014</code> |
|
297 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
298 |
+
```json
|
299 |
+
{
|
300 |
+
"scale": 20.0,
|
301 |
+
"similarity_fct": "cos_sim"
|
302 |
+
}
|
303 |
+
```
|
304 |
+
|
305 |
+
### Training Hyperparameters
|
306 |
+
#### Non-Default Hyperparameters
|
307 |
+
|
308 |
+
- `eval_strategy`: steps
|
309 |
+
- `per_device_train_batch_size`: 16
|
310 |
+
- `per_device_eval_batch_size`: 16
|
311 |
+
- `num_train_epochs`: 1
|
312 |
+
- `warmup_ratio`: 0.1
|
313 |
+
- `fp16`: True
|
314 |
+
- `load_best_model_at_end`: True
|
315 |
+
- `eval_on_start`: True
|
316 |
+
- `batch_sampler`: no_duplicates
|
317 |
+
|
318 |
+
#### All Hyperparameters
|
319 |
+
<details><summary>Click to expand</summary>
|
320 |
+
|
321 |
+
- `overwrite_output_dir`: False
|
322 |
+
- `do_predict`: False
|
323 |
+
- `eval_strategy`: steps
|
324 |
+
- `prediction_loss_only`: True
|
325 |
+
- `per_device_train_batch_size`: 16
|
326 |
+
- `per_device_eval_batch_size`: 16
|
327 |
+
- `per_gpu_train_batch_size`: None
|
328 |
+
- `per_gpu_eval_batch_size`: None
|
329 |
+
- `gradient_accumulation_steps`: 1
|
330 |
+
- `eval_accumulation_steps`: None
|
331 |
+
- `torch_empty_cache_steps`: None
|
332 |
+
- `learning_rate`: 5e-05
|
333 |
+
- `weight_decay`: 0.0
|
334 |
+
- `adam_beta1`: 0.9
|
335 |
+
- `adam_beta2`: 0.999
|
336 |
+
- `adam_epsilon`: 1e-08
|
337 |
+
- `max_grad_norm`: 1.0
|
338 |
+
- `num_train_epochs`: 1
|
339 |
+
- `max_steps`: -1
|
340 |
+
- `lr_scheduler_type`: linear
|
341 |
+
- `lr_scheduler_kwargs`: {}
|
342 |
+
- `warmup_ratio`: 0.1
|
343 |
+
- `warmup_steps`: 0
|
344 |
+
- `log_level`: passive
|
345 |
+
- `log_level_replica`: warning
|
346 |
+
- `log_on_each_node`: True
|
347 |
+
- `logging_nan_inf_filter`: True
|
348 |
+
- `save_safetensors`: True
|
349 |
+
- `save_on_each_node`: False
|
350 |
+
- `save_only_model`: False
|
351 |
+
- `restore_callback_states_from_checkpoint`: False
|
352 |
+
- `no_cuda`: False
|
353 |
+
- `use_cpu`: False
|
354 |
+
- `use_mps_device`: False
|
355 |
+
- `seed`: 42
|
356 |
+
- `data_seed`: None
|
357 |
+
- `jit_mode_eval`: False
|
358 |
+
- `use_ipex`: False
|
359 |
+
- `bf16`: False
|
360 |
+
- `fp16`: True
|
361 |
+
- `fp16_opt_level`: O1
|
362 |
+
- `half_precision_backend`: auto
|
363 |
+
- `bf16_full_eval`: False
|
364 |
+
- `fp16_full_eval`: False
|
365 |
+
- `tf32`: None
|
366 |
+
- `local_rank`: 0
|
367 |
+
- `ddp_backend`: None
|
368 |
+
- `tpu_num_cores`: None
|
369 |
+
- `tpu_metrics_debug`: False
|
370 |
+
- `debug`: []
|
371 |
+
- `dataloader_drop_last`: False
|
372 |
+
- `dataloader_num_workers`: 0
|
373 |
+
- `dataloader_prefetch_factor`: None
|
374 |
+
- `past_index`: -1
|
375 |
+
- `disable_tqdm`: False
|
376 |
+
- `remove_unused_columns`: True
|
377 |
+
- `label_names`: None
|
378 |
+
- `load_best_model_at_end`: True
|
379 |
+
- `ignore_data_skip`: False
|
380 |
+
- `fsdp`: []
|
381 |
+
- `fsdp_min_num_params`: 0
|
382 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
383 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
384 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
385 |
+
- `deepspeed`: None
|
386 |
+
- `label_smoothing_factor`: 0.0
|
387 |
+
- `optim`: adamw_torch
|
388 |
+
- `optim_args`: None
|
389 |
+
- `adafactor`: False
|
390 |
+
- `group_by_length`: False
|
391 |
+
- `length_column_name`: length
|
392 |
+
- `ddp_find_unused_parameters`: None
|
393 |
+
- `ddp_bucket_cap_mb`: None
|
394 |
+
- `ddp_broadcast_buffers`: False
|
395 |
+
- `dataloader_pin_memory`: True
|
396 |
+
- `dataloader_persistent_workers`: False
|
397 |
+
- `skip_memory_metrics`: True
|
398 |
+
- `use_legacy_prediction_loop`: False
|
399 |
+
- `push_to_hub`: False
|
400 |
+
- `resume_from_checkpoint`: None
|
401 |
+
- `hub_model_id`: None
|
402 |
+
- `hub_strategy`: every_save
|
403 |
+
- `hub_private_repo`: None
|
404 |
+
- `hub_always_push`: False
|
405 |
+
- `gradient_checkpointing`: False
|
406 |
+
- `gradient_checkpointing_kwargs`: None
|
407 |
+
- `include_inputs_for_metrics`: False
|
408 |
+
- `include_for_metrics`: []
|
409 |
+
- `eval_do_concat_batches`: True
|
410 |
+
- `fp16_backend`: auto
|
411 |
+
- `push_to_hub_model_id`: None
|
412 |
+
- `push_to_hub_organization`: None
|
413 |
+
- `mp_parameters`:
|
414 |
+
- `auto_find_batch_size`: False
|
415 |
+
- `full_determinism`: False
|
416 |
+
- `torchdynamo`: None
|
417 |
+
- `ray_scope`: last
|
418 |
+
- `ddp_timeout`: 1800
|
419 |
+
- `torch_compile`: False
|
420 |
+
- `torch_compile_backend`: None
|
421 |
+
- `torch_compile_mode`: None
|
422 |
+
- `dispatch_batches`: None
|
423 |
+
- `split_batches`: None
|
424 |
+
- `include_tokens_per_second`: False
|
425 |
+
- `include_num_input_tokens_seen`: False
|
426 |
+
- `neftune_noise_alpha`: None
|
427 |
+
- `optim_target_modules`: None
|
428 |
+
- `batch_eval_metrics`: False
|
429 |
+
- `eval_on_start`: True
|
430 |
+
- `use_liger_kernel`: False
|
431 |
+
- `eval_use_gather_object`: False
|
432 |
+
- `average_tokens_across_devices`: False
|
433 |
+
- `prompts`: None
|
434 |
+
- `batch_sampler`: no_duplicates
|
435 |
+
- `multi_dataset_batch_sampler`: proportional
|
436 |
+
|
437 |
+
</details>
|
438 |
+
|
439 |
+
### Training Logs
|
440 |
+
<details><summary>Click to expand</summary>
|
441 |
+
|
442 |
+
| Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
|
443 |
+
|:----------:|:--------:|:-------------:|:---------------:|:---------------------------------:|
|
444 |
+
| 0 | 0 | - | 1.1084 | 0.4644 |
|
445 |
+
| 0.0070 | 20 | 1.0801 | 0.8303 | 0.5117 |
|
446 |
+
| 0.0139 | 40 | 0.6994 | 0.4459 | 0.6310 |
|
447 |
+
| 0.0209 | 60 | 0.3674 | 0.2510 | 0.7155 |
|
448 |
+
| 0.0278 | 80 | 0.2814 | 0.1829 | 0.7521 |
|
449 |
+
| 0.0348 | 100 | 0.1746 | 0.1303 | 0.7751 |
|
450 |
+
| 0.0418 | 120 | 0.1867 | 0.1001 | 0.7772 |
|
451 |
+
| 0.0487 | 140 | 0.1047 | 0.0819 | 0.7857 |
|
452 |
+
| 0.0557 | 160 | 0.1032 | 0.0739 | 0.7960 |
|
453 |
+
| 0.0626 | 180 | 0.0783 | 0.0645 | 0.7861 |
|
454 |
+
| 0.0696 | 200 | 0.0575 | 0.0567 | 0.7849 |
|
455 |
+
| 0.0765 | 220 | 0.0969 | 0.0454 | 0.7945 |
|
456 |
+
| 0.0835 | 240 | 0.0769 | 0.0433 | 0.7890 |
|
457 |
+
| 0.0905 | 260 | 0.0864 | 0.0507 | 0.7848 |
|
458 |
+
| 0.0974 | 280 | 0.0495 | 0.0347 | 0.8052 |
|
459 |
+
| 0.1044 | 300 | 0.0429 | 0.0398 | 0.7955 |
|
460 |
+
| 0.1113 | 320 | 0.0432 | 0.0343 | 0.7915 |
|
461 |
+
| 0.1183 | 340 | 0.0392 | 0.0295 | 0.8177 |
|
462 |
+
| 0.1253 | 360 | 0.0211 | 0.0298 | 0.8052 |
|
463 |
+
| 0.1322 | 380 | 0.043 | 0.0339 | 0.8052 |
|
464 |
+
| 0.1392 | 400 | 0.0453 | 0.0322 | 0.8050 |
|
465 |
+
| 0.1461 | 420 | 0.0309 | 0.0286 | 0.8120 |
|
466 |
+
| 0.1531 | 440 | 0.0147 | 0.0321 | 0.8181 |
|
467 |
+
| 0.1601 | 460 | 0.0491 | 0.0273 | 0.8178 |
|
468 |
+
| 0.1670 | 480 | 0.0229 | 0.0232 | 0.8176 |
|
469 |
+
| 0.1740 | 500 | 0.0317 | 0.0210 | 0.8198 |
|
470 |
+
| 0.1809 | 520 | 0.0193 | 0.0207 | 0.8159 |
|
471 |
+
| 0.1879 | 540 | 0.034 | 0.0175 | 0.8191 |
|
472 |
+
| 0.1949 | 560 | 0.0292 | 0.0168 | 0.8166 |
|
473 |
+
| 0.2018 | 580 | 0.0431 | 0.0184 | 0.8228 |
|
474 |
+
| 0.2088 | 600 | 0.0306 | 0.0183 | 0.7963 |
|
475 |
+
| 0.2157 | 620 | 0.0134 | 0.0147 | 0.8216 |
|
476 |
+
| 0.2227 | 640 | 0.0155 | 0.0161 | 0.8166 |
|
477 |
+
| 0.2296 | 660 | 0.0201 | 0.0187 | 0.8170 |
|
478 |
+
| 0.2366 | 680 | 0.0301 | 0.0133 | 0.8272 |
|
479 |
+
| 0.2436 | 700 | 0.0164 | 0.0119 | 0.8274 |
|
480 |
+
| 0.2505 | 720 | 0.0254 | 0.0119 | 0.8223 |
|
481 |
+
| 0.2575 | 740 | 0.0129 | 0.0146 | 0.8165 |
|
482 |
+
| 0.2644 | 760 | 0.0208 | 0.0136 | 0.8162 |
|
483 |
+
| 0.2714 | 780 | 0.0157 | 0.0138 | 0.8120 |
|
484 |
+
| 0.2784 | 800 | 0.0169 | 0.0143 | 0.8248 |
|
485 |
+
| 0.2853 | 820 | 0.0158 | 0.0119 | 0.8166 |
|
486 |
+
| 0.2923 | 840 | 0.0227 | 0.0115 | 0.8153 |
|
487 |
+
| 0.2992 | 860 | 0.0196 | 0.0117 | 0.8163 |
|
488 |
+
| 0.3062 | 880 | 0.0137 | 0.0112 | 0.8225 |
|
489 |
+
| 0.3132 | 900 | 0.0299 | 0.0090 | 0.8155 |
|
490 |
+
| 0.3201 | 920 | 0.0073 | 0.0106 | 0.8157 |
|
491 |
+
| 0.3271 | 940 | 0.0248 | 0.0088 | 0.8174 |
|
492 |
+
| 0.3340 | 960 | 0.0179 | 0.0087 | 0.8215 |
|
493 |
+
| 0.3410 | 980 | 0.0171 | 0.0077 | 0.8285 |
|
494 |
+
| 0.3479 | 1000 | 0.0123 | 0.0096 | 0.8175 |
|
495 |
+
| 0.3549 | 1020 | 0.0081 | 0.0098 | 0.8152 |
|
496 |
+
| 0.3619 | 1040 | 0.0097 | 0.0094 | 0.8139 |
|
497 |
+
| 0.3688 | 1060 | 0.0379 | 0.0107 | 0.8236 |
|
498 |
+
| 0.3758 | 1080 | 0.0104 | 0.0078 | 0.8208 |
|
499 |
+
| 0.3827 | 1100 | 0.0067 | 0.0065 | 0.8189 |
|
500 |
+
| 0.3897 | 1120 | 0.0128 | 0.0080 | 0.8221 |
|
501 |
+
| 0.3967 | 1140 | 0.0049 | 0.0078 | 0.8181 |
|
502 |
+
| 0.4036 | 1160 | 0.0084 | 0.0092 | 0.8218 |
|
503 |
+
| 0.4106 | 1180 | 0.0173 | 0.0081 | 0.8248 |
|
504 |
+
| 0.4175 | 1200 | 0.0144 | 0.0080 | 0.8272 |
|
505 |
+
| 0.4245 | 1220 | 0.0025 | 0.0077 | 0.8260 |
|
506 |
+
| 0.4315 | 1240 | 0.0086 | 0.0072 | 0.8312 |
|
507 |
+
| 0.4384 | 1260 | 0.0114 | 0.0073 | 0.8242 |
|
508 |
+
| 0.4454 | 1280 | 0.0065 | 0.0067 | 0.8245 |
|
509 |
+
| 0.4523 | 1300 | 0.0132 | 0.0069 | 0.8248 |
|
510 |
+
| 0.4593 | 1320 | 0.003 | 0.0066 | 0.8233 |
|
511 |
+
| 0.4662 | 1340 | 0.0125 | 0.0066 | 0.8245 |
|
512 |
+
| 0.4732 | 1360 | 0.0016 | 0.0070 | 0.8281 |
|
513 |
+
| 0.4802 | 1380 | 0.0041 | 0.0066 | 0.8418 |
|
514 |
+
| 0.4871 | 1400 | 0.0117 | 0.0073 | 0.8361 |
|
515 |
+
| 0.4941 | 1420 | 0.0095 | 0.0073 | 0.8337 |
|
516 |
+
| 0.5010 | 1440 | 0.0184 | 0.0071 | 0.8282 |
|
517 |
+
| 0.5080 | 1460 | 0.0042 | 0.0069 | 0.8259 |
|
518 |
+
| 0.5150 | 1480 | 0.0077 | 0.0065 | 0.8235 |
|
519 |
+
| 0.5219 | 1500 | 0.0213 | 0.0059 | 0.8209 |
|
520 |
+
| 0.5289 | 1520 | 0.0037 | 0.0059 | 0.8277 |
|
521 |
+
| 0.5358 | 1540 | 0.0053 | 0.0053 | 0.8186 |
|
522 |
+
| 0.5428 | 1560 | 0.0045 | 0.0071 | 0.8238 |
|
523 |
+
| 0.5498 | 1580 | 0.0013 | 0.0101 | 0.8257 |
|
524 |
+
| 0.5567 | 1600 | 0.017 | 0.0051 | 0.8292 |
|
525 |
+
| 0.5637 | 1620 | 0.0053 | 0.0045 | 0.8234 |
|
526 |
+
| 0.5706 | 1640 | 0.0077 | 0.0044 | 0.8235 |
|
527 |
+
| 0.5776 | 1660 | 0.0135 | 0.0046 | 0.8200 |
|
528 |
+
| 0.5846 | 1680 | 0.0013 | 0.0045 | 0.8242 |
|
529 |
+
| 0.5915 | 1700 | 0.0067 | 0.0048 | 0.8266 |
|
530 |
+
| 0.5985 | 1720 | 0.0154 | 0.0049 | 0.8232 |
|
531 |
+
| 0.6054 | 1740 | 0.0037 | 0.0048 | 0.8222 |
|
532 |
+
| 0.6124 | 1760 | 0.0012 | 0.0049 | 0.8232 |
|
533 |
+
| 0.6193 | 1780 | 0.0112 | 0.0051 | 0.8212 |
|
534 |
+
| 0.6263 | 1800 | 0.0173 | 0.0056 | 0.8228 |
|
535 |
+
| 0.6333 | 1820 | 0.0044 | 0.0059 | 0.8177 |
|
536 |
+
| 0.6402 | 1840 | 0.0193 | 0.0059 | 0.8197 |
|
537 |
+
| 0.6472 | 1860 | 0.0028 | 0.0060 | 0.8203 |
|
538 |
+
| 0.6541 | 1880 | 0.005 | 0.0054 | 0.8278 |
|
539 |
+
| 0.6611 | 1900 | 0.0077 | 0.0049 | 0.8227 |
|
540 |
+
| 0.6681 | 1920 | 0.0126 | 0.0040 | 0.8267 |
|
541 |
+
| 0.6750 | 1940 | 0.008 | 0.0039 | 0.8258 |
|
542 |
+
| 0.6820 | 1960 | 0.0131 | 0.0039 | 0.8251 |
|
543 |
+
| 0.6889 | 1980 | 0.0114 | 0.0042 | 0.8310 |
|
544 |
+
| 0.6959 | 2000 | 0.0083 | 0.0041 | 0.8314 |
|
545 |
+
| 0.7029 | 2020 | 0.006 | 0.0037 | 0.8303 |
|
546 |
+
| 0.7098 | 2040 | 0.0048 | 0.0036 | 0.8269 |
|
547 |
+
| 0.7168 | 2060 | 0.0165 | 0.0040 | 0.8262 |
|
548 |
+
| 0.7237 | 2080 | 0.0093 | 0.0035 | 0.8158 |
|
549 |
+
| 0.7307 | 2100 | 0.007 | 0.0031 | 0.8167 |
|
550 |
+
| 0.7376 | 2120 | 0.0065 | 0.0030 | 0.8248 |
|
551 |
+
| 0.7446 | 2140 | 0.0042 | 0.0029 | 0.8274 |
|
552 |
+
| 0.7516 | 2160 | 0.0111 | 0.0026 | 0.8258 |
|
553 |
+
| 0.7585 | 2180 | 0.0066 | 0.0028 | 0.8249 |
|
554 |
+
| 0.7655 | 2200 | 0.0034 | 0.0034 | 0.8244 |
|
555 |
+
| 0.7724 | 2220 | 0.0013 | 0.0033 | 0.8238 |
|
556 |
+
| 0.7794 | 2240 | 0.0025 | 0.0034 | 0.8253 |
|
557 |
+
| 0.7864 | 2260 | 0.0065 | 0.0034 | 0.8240 |
|
558 |
+
| 0.7933 | 2280 | 0.0049 | 0.0035 | 0.8258 |
|
559 |
+
| 0.8003 | 2300 | 0.0007 | 0.0035 | 0.8277 |
|
560 |
+
| 0.8072 | 2320 | 0.004 | 0.0034 | 0.8298 |
|
561 |
+
| 0.8142 | 2340 | 0.0013 | 0.0033 | 0.8293 |
|
562 |
+
| 0.8212 | 2360 | 0.0122 | 0.0032 | 0.8300 |
|
563 |
+
| 0.8281 | 2380 | 0.0008 | 0.0033 | 0.8285 |
|
564 |
+
| 0.8351 | 2400 | 0.0019 | 0.0032 | 0.8266 |
|
565 |
+
| 0.8420 | 2420 | 0.0033 | 0.0032 | 0.8266 |
|
566 |
+
| 0.8490 | 2440 | 0.0078 | 0.0024 | 0.8284 |
|
567 |
+
| 0.8559 | 2460 | 0.0087 | 0.0022 | 0.8272 |
|
568 |
+
| 0.8629 | 2480 | 0.003 | 0.0021 | 0.8255 |
|
569 |
+
| 0.8699 | 2500 | 0.0039 | 0.0021 | 0.8232 |
|
570 |
+
| 0.8768 | 2520 | 0.0054 | 0.0021 | 0.8225 |
|
571 |
+
| **0.8838** | **2540** | **0.0015** | **0.0021** | **0.8236** |
|
572 |
+
| 0.8907 | 2560 | 0.0043 | 0.0021 | 0.8245 |
|
573 |
+
| 0.8977 | 2580 | 0.0083 | 0.0022 | 0.8237 |
|
574 |
+
| 0.9047 | 2600 | 0.0029 | 0.0024 | 0.8233 |
|
575 |
+
| 0.9116 | 2620 | 0.0095 | 0.0025 | 0.8257 |
|
576 |
+
| 0.9186 | 2640 | 0.0013 | 0.0025 | 0.8263 |
|
577 |
+
| 0.9255 | 2660 | 0.0025 | 0.0025 | 0.8268 |
|
578 |
+
| 0.9325 | 2680 | 0.006 | 0.0025 | 0.8264 |
|
579 |
+
| 0.9395 | 2700 | 0.0078 | 0.0026 | 0.8247 |
|
580 |
+
| 0.9464 | 2720 | 0.0061 | 0.0025 | 0.8248 |
|
581 |
+
| 0.9534 | 2740 | 0.001 | 0.0025 | 0.8238 |
|
582 |
+
| 0.9603 | 2760 | 0.0041 | 0.0025 | 0.8233 |
|
583 |
+
| 0.9673 | 2780 | 0.0157 | 0.0024 | 0.8249 |
|
584 |
+
| 0.9743 | 2800 | 0.0039 | 0.0024 | 0.8248 |
|
585 |
+
| 0.9812 | 2820 | 0.0047 | 0.0024 | 0.8242 |
|
586 |
+
| 0.9882 | 2840 | 0.0058 | 0.0024 | 0.8243 |
|
587 |
+
| 0.9951 | 2860 | 0.0018 | 0.0024 | 0.8242 |
|
588 |
+
|
589 |
+
* The bold row denotes the saved checkpoint.
|
590 |
+
</details>
|
591 |
+
|
592 |
+
### Framework Versions
|
593 |
+
- Python: 3.10.12
|
594 |
+
- Sentence Transformers: 3.4.0
|
595 |
+
- Transformers: 4.48.1
|
596 |
+
- PyTorch: 2.5.1+cu124
|
597 |
+
- Accelerate: 1.3.0
|
598 |
+
- Datasets: 3.2.0
|
599 |
+
- Tokenizers: 0.21.0
|
600 |
+
|
601 |
+
## Citation
|
602 |
+
|
603 |
+
### BibTeX
|
604 |
+
|
605 |
+
#### Sentence Transformers
|
606 |
+
```bibtex
|
607 |
+
@inproceedings{reimers-2019-sentence-bert,
|
608 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
609 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
610 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
611 |
+
month = "11",
|
612 |
+
year = "2019",
|
613 |
+
publisher = "Association for Computational Linguistics",
|
614 |
+
url = "https://arxiv.org/abs/1908.10084",
|
615 |
+
}
|
616 |
+
```
|
617 |
+
|
618 |
+
#### MultipleNegativesRankingLoss
|
619 |
+
```bibtex
|
620 |
+
@misc{henderson2017efficient,
|
621 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
622 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
623 |
+
year={2017},
|
624 |
+
eprint={1705.00652},
|
625 |
+
archivePrefix={arXiv},
|
626 |
+
primaryClass={cs.CL}
|
627 |
+
}
|
628 |
+
```
|
629 |
+
|
630 |
+
<!--
|
631 |
+
## Glossary
|
632 |
+
|
633 |
+
*Clearly define terms in order to be accessible across audiences.*
|
634 |
+
-->
|
635 |
+
|
636 |
+
<!--
|
637 |
+
## Model Card Authors
|
638 |
+
|
639 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
640 |
+
-->
|
641 |
+
|
642 |
+
<!--
|
643 |
+
## Model Card Contact
|
644 |
+
|
645 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
646 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-miniLM-L12-V2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.48.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28f4db58c67240e0c9d52bea87c1fb60edac45b2817fc40a8f2e97f261fb69b3
|
3 |
+
size 470637416
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_lower_case": true,
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 128,
|
52 |
+
"model_max_length": 128,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "</s>",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "<unk>"
|
65 |
+
}
|
unigram.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
3 |
+
size 14763260
|