Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +559 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +67 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93676f083ca6a157e750f80889c75bbdce6cc5837d497f2ca074261706fc0da0
|
3 |
+
size 1575072
|
README.md
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:42138
|
10 |
+
- loss:CosineSimilarityLoss
|
11 |
+
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
|
12 |
+
widget:
|
13 |
+
- source_sentence: Informasi importir Indonesia 2014 (Jilid Kedua)
|
14 |
+
sentences:
|
15 |
+
- Indikator Konstruksi Triwulan IV-2011
|
16 |
+
- Benchmark Indeks Konstruksi (2010=100), 1990-2013
|
17 |
+
- Statistik Upah Q-2 2002-Q-2 2004
|
18 |
+
- source_sentence: Direktori Perusahaan Penggiling Padi Aceh 2012
|
19 |
+
sentences:
|
20 |
+
- Direktori Perusahaan Industri Penggilingan Padi Tahun 2012 Provinsi Aceh
|
21 |
+
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan
|
22 |
+
Negara, Agustus 2024
|
23 |
+
- Statistik Harga Produsen Pertanian Subsektor Tanaman Pangan, Hortikultura, dan
|
24 |
+
Tanaman Perkebunan Rakyat 2022
|
25 |
+
- source_sentence: Neraca pemerintahan pusat triwulanan 2015-2021:2
|
26 |
+
sentences:
|
27 |
+
- Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2017- 2021, Buku 1 Pulau Sumatera
|
28 |
+
- Statistik Tebu Indonesia 2020
|
29 |
+
- Indikator Pasar Tenaga Kerja Indonesia Agustus 2011
|
30 |
+
- source_sentence: Data pembangunan kuartal kedua 2014
|
31 |
+
sentences:
|
32 |
+
- Katalog Publikasi BPS 2018
|
33 |
+
- Indikator Konstruksi Triwulan II-2014
|
34 |
+
- Produk Domestik Regional Bruto Provinsi-provinsi di Indonesia Menurut Penggunaan
|
35 |
+
2004-2008
|
36 |
+
- source_sentence: Laporan keuangan pemerintah provinsi periode 2003-2006
|
37 |
+
sentences:
|
38 |
+
- Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode ISIC 2013-2014
|
39 |
+
- Statistik Keuangan Provinsi 2003-2006
|
40 |
+
- Statistik Industri Manufaktur Indonesia 2013
|
41 |
+
datasets:
|
42 |
+
- yahyaabd/bps-publication-title-pairs
|
43 |
+
pipeline_tag: sentence-similarity
|
44 |
+
library_name: sentence-transformers
|
45 |
+
metrics:
|
46 |
+
- pearson_cosine
|
47 |
+
- spearman_cosine
|
48 |
+
model-index:
|
49 |
+
- name: SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
|
50 |
+
results:
|
51 |
+
- task:
|
52 |
+
type: semantic-similarity
|
53 |
+
name: Semantic Similarity
|
54 |
+
dataset:
|
55 |
+
name: allstat semantic dev
|
56 |
+
type: allstat-semantic-dev
|
57 |
+
metrics:
|
58 |
+
- type: pearson_cosine
|
59 |
+
value: 0.9659430111615187
|
60 |
+
name: Pearson Cosine
|
61 |
+
- type: spearman_cosine
|
62 |
+
value: 0.8744991009318857
|
63 |
+
name: Spearman Cosine
|
64 |
+
- task:
|
65 |
+
type: semantic-similarity
|
66 |
+
name: Semantic Similarity
|
67 |
+
dataset:
|
68 |
+
name: allstat semantic test
|
69 |
+
type: allstat-semantic-test
|
70 |
+
metrics:
|
71 |
+
- type: pearson_cosine
|
72 |
+
value: 0.9645449367522956
|
73 |
+
name: Pearson Cosine
|
74 |
+
- type: spearman_cosine
|
75 |
+
value: 0.8645918683015844
|
76 |
+
name: Spearman Cosine
|
77 |
+
---
|
78 |
+
|
79 |
+
# SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
|
80 |
+
|
81 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) on the [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs) dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
82 |
+
|
83 |
+
## Model Details
|
84 |
+
|
85 |
+
### Model Description
|
86 |
+
- **Model Type:** Sentence Transformer
|
87 |
+
- **Base model:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) <!-- at revision dad0fa1ee4fa6e982d3adbce87c73c02e6aee838 -->
|
88 |
+
- **Maximum Sequence Length:** 128 tokens
|
89 |
+
- **Output Dimensionality:** 512 dimensions
|
90 |
+
- **Similarity Function:** Cosine Similarity
|
91 |
+
- **Training Dataset:**
|
92 |
+
- [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs)
|
93 |
+
- **Language:** id
|
94 |
+
<!-- - **License:** Unknown -->
|
95 |
+
|
96 |
+
### Model Sources
|
97 |
+
|
98 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
99 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
100 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
101 |
+
|
102 |
+
### Full Model Architecture
|
103 |
+
|
104 |
+
```
|
105 |
+
SentenceTransformer(
|
106 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
107 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
108 |
+
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
109 |
+
)
|
110 |
+
```
|
111 |
+
|
112 |
+
## Usage
|
113 |
+
|
114 |
+
### Direct Usage (Sentence Transformers)
|
115 |
+
|
116 |
+
First install the Sentence Transformers library:
|
117 |
+
|
118 |
+
```bash
|
119 |
+
pip install -U sentence-transformers
|
120 |
+
```
|
121 |
+
|
122 |
+
Then you can load this model and run inference.
|
123 |
+
```python
|
124 |
+
from sentence_transformers import SentenceTransformer
|
125 |
+
|
126 |
+
# Download from the 🤗 Hub
|
127 |
+
model = SentenceTransformer("yahyaabd/f-sts")
|
128 |
+
# Run inference
|
129 |
+
sentences = [
|
130 |
+
'Laporan keuangan pemerintah provinsi periode 2003-2006',
|
131 |
+
'Statistik Keuangan Provinsi 2003-2006',
|
132 |
+
'Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode ISIC 2013-2014',
|
133 |
+
]
|
134 |
+
embeddings = model.encode(sentences)
|
135 |
+
print(embeddings.shape)
|
136 |
+
# [3, 512]
|
137 |
+
|
138 |
+
# Get the similarity scores for the embeddings
|
139 |
+
similarities = model.similarity(embeddings, embeddings)
|
140 |
+
print(similarities.shape)
|
141 |
+
# [3, 3]
|
142 |
+
```
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Direct Usage (Transformers)
|
146 |
+
|
147 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
148 |
+
|
149 |
+
</details>
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Downstream Usage (Sentence Transformers)
|
154 |
+
|
155 |
+
You can finetune this model on your own dataset.
|
156 |
+
|
157 |
+
<details><summary>Click to expand</summary>
|
158 |
+
|
159 |
+
</details>
|
160 |
+
-->
|
161 |
+
|
162 |
+
<!--
|
163 |
+
### Out-of-Scope Use
|
164 |
+
|
165 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
166 |
+
-->
|
167 |
+
|
168 |
+
## Evaluation
|
169 |
+
|
170 |
+
### Metrics
|
171 |
+
|
172 |
+
#### Semantic Similarity
|
173 |
+
|
174 |
+
* Datasets: `allstat-semantic-dev` and `allstat-semantic-test`
|
175 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
176 |
+
|
177 |
+
| Metric | allstat-semantic-dev | allstat-semantic-test |
|
178 |
+
|:--------------------|:---------------------|:----------------------|
|
179 |
+
| pearson_cosine | 0.9659 | 0.9645 |
|
180 |
+
| **spearman_cosine** | **0.8745** | **0.8646** |
|
181 |
+
|
182 |
+
<!--
|
183 |
+
## Bias, Risks and Limitations
|
184 |
+
|
185 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
<!--
|
189 |
+
### Recommendations
|
190 |
+
|
191 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
192 |
+
-->
|
193 |
+
|
194 |
+
## Training Details
|
195 |
+
|
196 |
+
### Training Dataset
|
197 |
+
|
198 |
+
#### bps-publication-title-pairs
|
199 |
+
|
200 |
+
* Dataset: [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs) at [4987e97](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs/tree/4987e97a87a10fa40313e6c3efb667ed2c54775d)
|
201 |
+
* Size: 42,138 training samples
|
202 |
+
* Columns: <code>query</code>, <code>doc_title</code>, and <code>score</code>
|
203 |
+
* Approximate statistics based on the first 1000 samples:
|
204 |
+
| | query | doc_title | score |
|
205 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
206 |
+
| type | string | string | float |
|
207 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 12.33 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.04 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.53</li><li>max: 1.0</li></ul> |
|
208 |
+
* Samples:
|
209 |
+
| query | doc_title | score |
|
210 |
+
|:---------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:------------------|
|
211 |
+
| <code>Hasil riset mobilitas Jabodetabek tahun 2023</code> | <code>Statistik Komuter Jabodetabek Hasil Survei Komuter Jabodetabek 2023</code> | <code>0.85</code> |
|
212 |
+
| <code>Indeks harga konsumen di Indonesia tahun 2017 (82 kota)</code> | <code>Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 82 Kota di Indonesia 2017</code> | <code>0.15</code> |
|
213 |
+
| <code>Laporan sektor bangunan Indonesia Q4 2009</code> | <code>Indikator Konstruksi Triwulan IV Tahun 2009</code> | <code>0.91</code> |
|
214 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
215 |
+
```json
|
216 |
+
{
|
217 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
218 |
+
}
|
219 |
+
```
|
220 |
+
|
221 |
+
### Evaluation Dataset
|
222 |
+
|
223 |
+
#### bps-publication-title-pairs
|
224 |
+
|
225 |
+
* Dataset: [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs) at [4987e97](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs/tree/4987e97a87a10fa40313e6c3efb667ed2c54775d)
|
226 |
+
* Size: 2,634 evaluation samples
|
227 |
+
* Columns: <code>query</code>, <code>doc_title</code>, and <code>score</code>
|
228 |
+
* Approximate statistics based on the first 1000 samples:
|
229 |
+
| | query | doc_title | score |
|
230 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
231 |
+
| type | string | string | float |
|
232 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.31 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.19 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.55</li><li>max: 1.0</li></ul> |
|
233 |
+
* Samples:
|
234 |
+
| query | doc_title | score |
|
235 |
+
|:----------------------------------------------------|:------------------------------------------------------------------|:-----------------|
|
236 |
+
| <code>Statistik tebu Indonesia tahun 2018</code> | <code>Direktori Perusahaan Perkebunan Karet Indonesia 2018</code> | <code>0.1</code> |
|
237 |
+
| <code>Data industri makanan dan minuman 2017</code> | <code>Statistik Upah Buruh Tani di Perdesaan 2018</code> | <code>0.2</code> |
|
238 |
+
| <code>Biaya hidup di Gorontalo tahun 2018</code> | <code>Survei Biaya Hidup (SBH) 2018 Gorontalo</code> | <code>0.9</code> |
|
239 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
240 |
+
```json
|
241 |
+
{
|
242 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
243 |
+
}
|
244 |
+
```
|
245 |
+
|
246 |
+
### Training Hyperparameters
|
247 |
+
#### Non-Default Hyperparameters
|
248 |
+
|
249 |
+
- `eval_strategy`: steps
|
250 |
+
- `per_device_train_batch_size`: 16
|
251 |
+
- `per_device_eval_batch_size`: 16
|
252 |
+
- `num_train_epochs`: 5
|
253 |
+
- `warmup_ratio`: 0.1
|
254 |
+
- `fp16`: True
|
255 |
+
|
256 |
+
#### All Hyperparameters
|
257 |
+
<details><summary>Click to expand</summary>
|
258 |
+
|
259 |
+
- `overwrite_output_dir`: False
|
260 |
+
- `do_predict`: False
|
261 |
+
- `eval_strategy`: steps
|
262 |
+
- `prediction_loss_only`: True
|
263 |
+
- `per_device_train_batch_size`: 16
|
264 |
+
- `per_device_eval_batch_size`: 16
|
265 |
+
- `per_gpu_train_batch_size`: None
|
266 |
+
- `per_gpu_eval_batch_size`: None
|
267 |
+
- `gradient_accumulation_steps`: 1
|
268 |
+
- `eval_accumulation_steps`: None
|
269 |
+
- `torch_empty_cache_steps`: None
|
270 |
+
- `learning_rate`: 5e-05
|
271 |
+
- `weight_decay`: 0.0
|
272 |
+
- `adam_beta1`: 0.9
|
273 |
+
- `adam_beta2`: 0.999
|
274 |
+
- `adam_epsilon`: 1e-08
|
275 |
+
- `max_grad_norm`: 1.0
|
276 |
+
- `num_train_epochs`: 5
|
277 |
+
- `max_steps`: -1
|
278 |
+
- `lr_scheduler_type`: linear
|
279 |
+
- `lr_scheduler_kwargs`: {}
|
280 |
+
- `warmup_ratio`: 0.1
|
281 |
+
- `warmup_steps`: 0
|
282 |
+
- `log_level`: passive
|
283 |
+
- `log_level_replica`: warning
|
284 |
+
- `log_on_each_node`: True
|
285 |
+
- `logging_nan_inf_filter`: True
|
286 |
+
- `save_safetensors`: True
|
287 |
+
- `save_on_each_node`: False
|
288 |
+
- `save_only_model`: False
|
289 |
+
- `restore_callback_states_from_checkpoint`: False
|
290 |
+
- `no_cuda`: False
|
291 |
+
- `use_cpu`: False
|
292 |
+
- `use_mps_device`: False
|
293 |
+
- `seed`: 42
|
294 |
+
- `data_seed`: None
|
295 |
+
- `jit_mode_eval`: False
|
296 |
+
- `use_ipex`: False
|
297 |
+
- `bf16`: False
|
298 |
+
- `fp16`: True
|
299 |
+
- `fp16_opt_level`: O1
|
300 |
+
- `half_precision_backend`: auto
|
301 |
+
- `bf16_full_eval`: False
|
302 |
+
- `fp16_full_eval`: False
|
303 |
+
- `tf32`: None
|
304 |
+
- `local_rank`: 0
|
305 |
+
- `ddp_backend`: None
|
306 |
+
- `tpu_num_cores`: None
|
307 |
+
- `tpu_metrics_debug`: False
|
308 |
+
- `debug`: []
|
309 |
+
- `dataloader_drop_last`: False
|
310 |
+
- `dataloader_num_workers`: 0
|
311 |
+
- `dataloader_prefetch_factor`: None
|
312 |
+
- `past_index`: -1
|
313 |
+
- `disable_tqdm`: False
|
314 |
+
- `remove_unused_columns`: True
|
315 |
+
- `label_names`: None
|
316 |
+
- `load_best_model_at_end`: False
|
317 |
+
- `ignore_data_skip`: False
|
318 |
+
- `fsdp`: []
|
319 |
+
- `fsdp_min_num_params`: 0
|
320 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
321 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
322 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
323 |
+
- `deepspeed`: None
|
324 |
+
- `label_smoothing_factor`: 0.0
|
325 |
+
- `optim`: adamw_torch
|
326 |
+
- `optim_args`: None
|
327 |
+
- `adafactor`: False
|
328 |
+
- `group_by_length`: False
|
329 |
+
- `length_column_name`: length
|
330 |
+
- `ddp_find_unused_parameters`: None
|
331 |
+
- `ddp_bucket_cap_mb`: None
|
332 |
+
- `ddp_broadcast_buffers`: False
|
333 |
+
- `dataloader_pin_memory`: True
|
334 |
+
- `dataloader_persistent_workers`: False
|
335 |
+
- `skip_memory_metrics`: True
|
336 |
+
- `use_legacy_prediction_loop`: False
|
337 |
+
- `push_to_hub`: False
|
338 |
+
- `resume_from_checkpoint`: None
|
339 |
+
- `hub_model_id`: None
|
340 |
+
- `hub_strategy`: every_save
|
341 |
+
- `hub_private_repo`: None
|
342 |
+
- `hub_always_push`: False
|
343 |
+
- `gradient_checkpointing`: False
|
344 |
+
- `gradient_checkpointing_kwargs`: None
|
345 |
+
- `include_inputs_for_metrics`: False
|
346 |
+
- `include_for_metrics`: []
|
347 |
+
- `eval_do_concat_batches`: True
|
348 |
+
- `fp16_backend`: auto
|
349 |
+
- `push_to_hub_model_id`: None
|
350 |
+
- `push_to_hub_organization`: None
|
351 |
+
- `mp_parameters`:
|
352 |
+
- `auto_find_batch_size`: False
|
353 |
+
- `full_determinism`: False
|
354 |
+
- `torchdynamo`: None
|
355 |
+
- `ray_scope`: last
|
356 |
+
- `ddp_timeout`: 1800
|
357 |
+
- `torch_compile`: False
|
358 |
+
- `torch_compile_backend`: None
|
359 |
+
- `torch_compile_mode`: None
|
360 |
+
- `dispatch_batches`: None
|
361 |
+
- `split_batches`: None
|
362 |
+
- `include_tokens_per_second`: False
|
363 |
+
- `include_num_input_tokens_seen`: False
|
364 |
+
- `neftune_noise_alpha`: None
|
365 |
+
- `optim_target_modules`: None
|
366 |
+
- `batch_eval_metrics`: False
|
367 |
+
- `eval_on_start`: False
|
368 |
+
- `use_liger_kernel`: False
|
369 |
+
- `eval_use_gather_object`: False
|
370 |
+
- `average_tokens_across_devices`: False
|
371 |
+
- `prompts`: None
|
372 |
+
- `batch_sampler`: batch_sampler
|
373 |
+
- `multi_dataset_batch_sampler`: proportional
|
374 |
+
|
375 |
+
</details>
|
376 |
+
|
377 |
+
### Training Logs
|
378 |
+
<details><summary>Click to expand</summary>
|
379 |
+
|
380 |
+
| Epoch | Step | Training Loss | Validation Loss | allstat-semantic-dev_spearman_cosine | allstat-semantic-test_spearman_cosine |
|
381 |
+
|:------:|:-----:|:-------------:|:---------------:|:------------------------------------:|:-------------------------------------:|
|
382 |
+
| 0.0380 | 100 | 0.0435 | 0.0320 | 0.7989 | - |
|
383 |
+
| 0.0759 | 200 | 0.0287 | 0.0246 | 0.8127 | - |
|
384 |
+
| 0.1139 | 300 | 0.0261 | 0.0222 | 0.8132 | - |
|
385 |
+
| 0.1519 | 400 | 0.0229 | 0.0216 | 0.8096 | - |
|
386 |
+
| 0.1898 | 500 | 0.0228 | 0.0213 | 0.8090 | - |
|
387 |
+
| 0.2278 | 600 | 0.0242 | 0.0210 | 0.8096 | - |
|
388 |
+
| 0.2658 | 700 | 0.0214 | 0.0199 | 0.8143 | - |
|
389 |
+
| 0.3037 | 800 | 0.0204 | 0.0197 | 0.8136 | - |
|
390 |
+
| 0.3417 | 900 | 0.0218 | 0.0202 | 0.8097 | - |
|
391 |
+
| 0.3797 | 1000 | 0.0228 | 0.0206 | 0.8077 | - |
|
392 |
+
| 0.4176 | 1100 | 0.0226 | 0.0192 | 0.8109 | - |
|
393 |
+
| 0.4556 | 1200 | 0.021 | 0.0202 | 0.8059 | - |
|
394 |
+
| 0.4935 | 1300 | 0.0221 | 0.0204 | 0.8053 | - |
|
395 |
+
| 0.5315 | 1400 | 0.0218 | 0.0203 | 0.8070 | - |
|
396 |
+
| 0.5695 | 1500 | 0.0229 | 0.0213 | 0.8071 | - |
|
397 |
+
| 0.6074 | 1600 | 0.0248 | 0.0202 | 0.8125 | - |
|
398 |
+
| 0.6454 | 1700 | 0.0207 | 0.0189 | 0.8116 | - |
|
399 |
+
| 0.6834 | 1800 | 0.0206 | 0.0195 | 0.8106 | - |
|
400 |
+
| 0.7213 | 1900 | 0.0202 | 0.0200 | 0.8117 | - |
|
401 |
+
| 0.7593 | 2000 | 0.0198 | 0.0193 | 0.8163 | - |
|
402 |
+
| 0.7973 | 2100 | 0.0187 | 0.0176 | 0.8204 | - |
|
403 |
+
| 0.8352 | 2200 | 0.0188 | 0.0177 | 0.8192 | - |
|
404 |
+
| 0.8732 | 2300 | 0.0192 | 0.0191 | 0.8167 | - |
|
405 |
+
| 0.9112 | 2400 | 0.0173 | 0.0176 | 0.8188 | - |
|
406 |
+
| 0.9491 | 2500 | 0.0186 | 0.0183 | 0.8212 | - |
|
407 |
+
| 0.9871 | 2600 | 0.0174 | 0.0182 | 0.8243 | - |
|
408 |
+
| 1.0251 | 2700 | 0.0148 | 0.0158 | 0.8255 | - |
|
409 |
+
| 1.0630 | 2800 | 0.0149 | 0.0162 | 0.8216 | - |
|
410 |
+
| 1.1010 | 2900 | 0.0137 | 0.0161 | 0.8273 | - |
|
411 |
+
| 1.1390 | 3000 | 0.0148 | 0.0166 | 0.8233 | - |
|
412 |
+
| 1.1769 | 3100 | 0.0138 | 0.0155 | 0.8251 | - |
|
413 |
+
| 1.2149 | 3200 | 0.0122 | 0.0154 | 0.8320 | - |
|
414 |
+
| 1.2528 | 3300 | 0.0149 | 0.0158 | 0.8293 | - |
|
415 |
+
| 1.2908 | 3400 | 0.0134 | 0.0150 | 0.8314 | - |
|
416 |
+
| 1.3288 | 3500 | 0.0141 | 0.0148 | 0.8292 | - |
|
417 |
+
| 1.3667 | 3600 | 0.0138 | 0.0140 | 0.8337 | - |
|
418 |
+
| 1.4047 | 3700 | 0.0128 | 0.0158 | 0.8256 | - |
|
419 |
+
| 1.4427 | 3800 | 0.0135 | 0.0154 | 0.8284 | - |
|
420 |
+
| 1.4806 | 3900 | 0.0142 | 0.0151 | 0.8376 | - |
|
421 |
+
| 1.5186 | 4000 | 0.0148 | 0.0145 | 0.8308 | - |
|
422 |
+
| 1.5566 | 4100 | 0.013 | 0.0146 | 0.8373 | - |
|
423 |
+
| 1.5945 | 4200 | 0.0137 | 0.0144 | 0.8296 | - |
|
424 |
+
| 1.6325 | 4300 | 0.0126 | 0.0146 | 0.8273 | - |
|
425 |
+
| 1.6705 | 4400 | 0.0138 | 0.0138 | 0.8358 | - |
|
426 |
+
| 1.7084 | 4500 | 0.0141 | 0.0144 | 0.8371 | - |
|
427 |
+
| 1.7464 | 4600 | 0.0127 | 0.0142 | 0.8339 | - |
|
428 |
+
| 1.7844 | 4700 | 0.0124 | 0.0144 | 0.8356 | - |
|
429 |
+
| 1.8223 | 4800 | 0.0126 | 0.0142 | 0.8311 | - |
|
430 |
+
| 1.8603 | 4900 | 0.0145 | 0.0137 | 0.8371 | - |
|
431 |
+
| 1.8983 | 5000 | 0.0125 | 0.0139 | 0.8336 | - |
|
432 |
+
| 1.9362 | 5100 | 0.0137 | 0.0140 | 0.8394 | - |
|
433 |
+
| 1.9742 | 5200 | 0.0127 | 0.0135 | 0.8374 | - |
|
434 |
+
| 2.0121 | 5300 | 0.0111 | 0.0135 | 0.8384 | - |
|
435 |
+
| 2.0501 | 5400 | 0.0086 | 0.0127 | 0.8404 | - |
|
436 |
+
| 2.0881 | 5500 | 0.0089 | 0.0120 | 0.8453 | - |
|
437 |
+
| 2.1260 | 5600 | 0.0091 | 0.0119 | 0.8463 | - |
|
438 |
+
| 2.1640 | 5700 | 0.0094 | 0.0125 | 0.8432 | - |
|
439 |
+
| 2.2020 | 5800 | 0.009 | 0.0126 | 0.8440 | - |
|
440 |
+
| 2.2399 | 5900 | 0.0093 | 0.0120 | 0.8469 | - |
|
441 |
+
| 2.2779 | 6000 | 0.0091 | 0.0124 | 0.8484 | - |
|
442 |
+
| 2.3159 | 6100 | 0.0101 | 0.0119 | 0.8472 | - |
|
443 |
+
| 2.3538 | 6200 | 0.0091 | 0.0125 | 0.8419 | - |
|
444 |
+
| 2.3918 | 6300 | 0.0105 | 0.0125 | 0.8409 | - |
|
445 |
+
| 2.4298 | 6400 | 0.0096 | 0.0125 | 0.8446 | - |
|
446 |
+
| 2.4677 | 6500 | 0.0099 | 0.0120 | 0.8431 | - |
|
447 |
+
| 2.5057 | 6600 | 0.0098 | 0.0124 | 0.8428 | - |
|
448 |
+
| 2.5437 | 6700 | 0.0085 | 0.0120 | 0.8444 | - |
|
449 |
+
| 2.5816 | 6800 | 0.0096 | 0.0120 | 0.8487 | - |
|
450 |
+
| 2.6196 | 6900 | 0.0094 | 0.0127 | 0.8479 | - |
|
451 |
+
| 2.6576 | 7000 | 0.0082 | 0.0116 | 0.8504 | - |
|
452 |
+
| 2.6955 | 7100 | 0.0098 | 0.0115 | 0.8509 | - |
|
453 |
+
| 2.7335 | 7200 | 0.0088 | 0.0114 | 0.8551 | - |
|
454 |
+
| 2.7715 | 7300 | 0.0081 | 0.0112 | 0.8525 | - |
|
455 |
+
| 2.8094 | 7400 | 0.0099 | 0.0114 | 0.8497 | - |
|
456 |
+
| 2.8474 | 7500 | 0.0085 | 0.0116 | 0.8527 | - |
|
457 |
+
| 2.8853 | 7600 | 0.0098 | 0.0115 | 0.8502 | - |
|
458 |
+
| 2.9233 | 7700 | 0.0093 | 0.0118 | 0.8482 | - |
|
459 |
+
| 2.9613 | 7800 | 0.0093 | 0.0117 | 0.8512 | - |
|
460 |
+
| 2.9992 | 7900 | 0.0087 | 0.0117 | 0.8517 | - |
|
461 |
+
| 3.0372 | 8000 | 0.0064 | 0.0106 | 0.8559 | - |
|
462 |
+
| 3.0752 | 8100 | 0.0059 | 0.0107 | 0.8578 | - |
|
463 |
+
| 3.1131 | 8200 | 0.0062 | 0.0106 | 0.8556 | - |
|
464 |
+
| 3.1511 | 8300 | 0.0071 | 0.0107 | 0.8526 | - |
|
465 |
+
| 3.1891 | 8400 | 0.0059 | 0.0106 | 0.8563 | - |
|
466 |
+
| 3.2270 | 8500 | 0.0065 | 0.0105 | 0.8595 | - |
|
467 |
+
| 3.2650 | 8600 | 0.0068 | 0.0105 | 0.8595 | - |
|
468 |
+
| 3.3030 | 8700 | 0.0068 | 0.0105 | 0.8588 | - |
|
469 |
+
| 3.3409 | 8800 | 0.0061 | 0.0103 | 0.8592 | - |
|
470 |
+
| 3.3789 | 8900 | 0.0067 | 0.0103 | 0.8599 | - |
|
471 |
+
| 3.4169 | 9000 | 0.0061 | 0.0102 | 0.8597 | - |
|
472 |
+
| 3.4548 | 9100 | 0.0058 | 0.0106 | 0.8604 | - |
|
473 |
+
| 3.4928 | 9200 | 0.0068 | 0.0103 | 0.8599 | - |
|
474 |
+
| 3.5308 | 9300 | 0.0058 | 0.0099 | 0.8636 | - |
|
475 |
+
| 3.5687 | 9400 | 0.0061 | 0.0100 | 0.8625 | - |
|
476 |
+
| 3.6067 | 9500 | 0.0064 | 0.0105 | 0.8590 | - |
|
477 |
+
| 3.6446 | 9600 | 0.006 | 0.0101 | 0.8590 | - |
|
478 |
+
| 3.6826 | 9700 | 0.0064 | 0.0106 | 0.8590 | - |
|
479 |
+
| 3.7206 | 9800 | 0.0059 | 0.0105 | 0.8600 | - |
|
480 |
+
| 3.7585 | 9900 | 0.0066 | 0.0102 | 0.8635 | - |
|
481 |
+
| 3.7965 | 10000 | 0.0065 | 0.0101 | 0.8617 | - |
|
482 |
+
| 3.8345 | 10100 | 0.006 | 0.0104 | 0.8628 | - |
|
483 |
+
| 3.8724 | 10200 | 0.0063 | 0.0103 | 0.8629 | - |
|
484 |
+
| 3.9104 | 10300 | 0.0064 | 0.0098 | 0.8659 | - |
|
485 |
+
| 3.9484 | 10400 | 0.0063 | 0.0098 | 0.8669 | - |
|
486 |
+
| 3.9863 | 10500 | 0.0062 | 0.0100 | 0.8647 | - |
|
487 |
+
| 4.0243 | 10600 | 0.0052 | 0.0095 | 0.8666 | - |
|
488 |
+
| 4.0623 | 10700 | 0.0045 | 0.0095 | 0.8665 | - |
|
489 |
+
| 4.1002 | 10800 | 0.004 | 0.0097 | 0.8662 | - |
|
490 |
+
| 4.1382 | 10900 | 0.0042 | 0.0095 | 0.8680 | - |
|
491 |
+
| 4.1762 | 11000 | 0.0045 | 0.0096 | 0.8676 | - |
|
492 |
+
| 4.2141 | 11100 | 0.0044 | 0.0096 | 0.8673 | - |
|
493 |
+
| 4.2521 | 11200 | 0.0043 | 0.0097 | 0.8684 | - |
|
494 |
+
| 4.2901 | 11300 | 0.0046 | 0.0094 | 0.8705 | - |
|
495 |
+
| 4.3280 | 11400 | 0.0039 | 0.0095 | 0.8699 | - |
|
496 |
+
| 4.3660 | 11500 | 0.0046 | 0.0094 | 0.8707 | - |
|
497 |
+
| 4.4039 | 11600 | 0.0041 | 0.0094 | 0.8708 | - |
|
498 |
+
| 4.4419 | 11700 | 0.0039 | 0.0093 | 0.8709 | - |
|
499 |
+
| 4.4799 | 11800 | 0.0046 | 0.0092 | 0.8720 | - |
|
500 |
+
| 4.5178 | 11900 | 0.0043 | 0.0093 | 0.8715 | - |
|
501 |
+
| 4.5558 | 12000 | 0.004 | 0.0093 | 0.8726 | - |
|
502 |
+
| 4.5938 | 12100 | 0.0043 | 0.0092 | 0.8729 | - |
|
503 |
+
| 4.6317 | 12200 | 0.0042 | 0.0092 | 0.8734 | - |
|
504 |
+
| 4.6697 | 12300 | 0.004 | 0.0091 | 0.8735 | - |
|
505 |
+
| 4.7077 | 12400 | 0.004 | 0.0092 | 0.8733 | - |
|
506 |
+
| 4.7456 | 12500 | 0.0039 | 0.0090 | 0.8743 | - |
|
507 |
+
| 4.7836 | 12600 | 0.0044 | 0.0090 | 0.8749 | - |
|
508 |
+
| 4.8216 | 12700 | 0.0041 | 0.0089 | 0.8752 | - |
|
509 |
+
| 4.8595 | 12800 | 0.004 | 0.0090 | 0.8746 | - |
|
510 |
+
| 4.8975 | 12900 | 0.004 | 0.0090 | 0.8744 | - |
|
511 |
+
| 4.9355 | 13000 | 0.0041 | 0.0090 | 0.8746 | - |
|
512 |
+
| 4.9734 | 13100 | 0.0039 | 0.0090 | 0.8745 | - |
|
513 |
+
| 5.0 | 13170 | - | - | - | 0.8646 |
|
514 |
+
|
515 |
+
</details>
|
516 |
+
|
517 |
+
### Framework Versions
|
518 |
+
- Python: 3.10.12
|
519 |
+
- Sentence Transformers: 3.3.1
|
520 |
+
- Transformers: 4.47.1
|
521 |
+
- PyTorch: 2.5.1+cu121
|
522 |
+
- Accelerate: 1.2.1
|
523 |
+
- Datasets: 3.2.0
|
524 |
+
- Tokenizers: 0.21.0
|
525 |
+
|
526 |
+
## Citation
|
527 |
+
|
528 |
+
### BibTeX
|
529 |
+
|
530 |
+
#### Sentence Transformers
|
531 |
+
```bibtex
|
532 |
+
@inproceedings{reimers-2019-sentence-bert,
|
533 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
534 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
535 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
536 |
+
month = "11",
|
537 |
+
year = "2019",
|
538 |
+
publisher = "Association for Computational Linguistics",
|
539 |
+
url = "https://arxiv.org/abs/1908.10084",
|
540 |
+
}
|
541 |
+
```
|
542 |
+
|
543 |
+
<!--
|
544 |
+
## Glossary
|
545 |
+
|
546 |
+
*Clearly define terms in order to be accessible across audiences.*
|
547 |
+
-->
|
548 |
+
|
549 |
+
<!--
|
550 |
+
## Model Card Authors
|
551 |
+
|
552 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
553 |
+
-->
|
554 |
+
|
555 |
+
<!--
|
556 |
+
## Model Card Contact
|
557 |
+
|
558 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
559 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/training_stsbenchmark_f-2024-12-27_03-19-42/final",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_hidden_states": true,
|
17 |
+
"output_past": true,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"qa_dropout": 0.1,
|
20 |
+
"seq_classif_dropout": 0.2,
|
21 |
+
"sinusoidal_pos_embds": false,
|
22 |
+
"tie_weights_": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.47.1",
|
25 |
+
"vocab_size": 119547
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:169bb23ce1e588f06450e3ee061c73fc0a9c0679b8c1fcb78e402db40affbff2
|
3 |
+
size 538947416
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"full_tokenizer_file": null,
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_len": 512,
|
52 |
+
"max_length": 128,
|
53 |
+
"model_max_length": 128,
|
54 |
+
"never_split": null,
|
55 |
+
"pad_to_multiple_of": null,
|
56 |
+
"pad_token": "[PAD]",
|
57 |
+
"pad_token_type_id": 0,
|
58 |
+
"padding_side": "right",
|
59 |
+
"sep_token": "[SEP]",
|
60 |
+
"stride": 0,
|
61 |
+
"strip_accents": null,
|
62 |
+
"tokenize_chinese_chars": true,
|
63 |
+
"tokenizer_class": "DistilBertTokenizer",
|
64 |
+
"truncation_side": "right",
|
65 |
+
"truncation_strategy": "longest_first",
|
66 |
+
"unk_token": "[UNK]"
|
67 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|