willhe-xverse
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ inference: false
|
|
9 |
|
10 |
## 更新信息
|
11 |
|
12 |
-
- **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int8量化模型,支持vLLM推理
|
13 |
- **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
|
14 |
- **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
|
15 |
- **[2023/11/24]** 更新预训练数据的相关信息。
|
@@ -17,7 +17,7 @@ inference: false
|
|
17 |
|
18 |
## Update Information
|
19 |
|
20 |
-
- **[2024/03/25]** Release the XVERSE-65B-Chat-GPTQ-Int8 quantification model, supporting vLLM inference for the
|
21 |
- **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
|
22 |
- **[2023/11/29]** Update model architecture and additional pre-training data information.
|
23 |
- **[2023/11/24]** Update the related information of the pre-training data.
|
@@ -69,7 +69,7 @@ We advise you to clone [`vllm`](https://github.com/vllm-project/vllm.git) and in
|
|
69 |
cat gptq_model-8bit-128g.safetensors.* > gptq_model-8bit-128g.safetensors
|
70 |
```
|
71 |
|
72 |
-
我们演示了如何使用
|
73 |
|
74 |
```python
|
75 |
from vllm import LLM, SamplingParams
|
@@ -104,7 +104,7 @@ we have divided the safetensors file into three parts, so you can connect them t
|
|
104 |
cat gptq_model-8bit-128g.safetensors.* > gptq_model-8bit-128g.safetensors
|
105 |
```
|
106 |
|
107 |
-
We demonstrated how to use
|
108 |
|
109 |
```python
|
110 |
from vllm import LLM, SamplingParams
|
|
|
9 |
|
10 |
## 更新信息
|
11 |
|
12 |
+
- **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int8量化模型,支持vLLM推理XVERSE-65B-Chat量化模型。
|
13 |
- **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
|
14 |
- **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
|
15 |
- **[2023/11/24]** 更新预训练数据的相关信息。
|
|
|
17 |
|
18 |
## Update Information
|
19 |
|
20 |
+
- **[2024/03/25]** Release the XVERSE-65B-Chat-GPTQ-Int8 quantification model, supporting vLLM inference for the XVERSE-65B-Chat quantification model.
|
21 |
- **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
|
22 |
- **[2023/11/29]** Update model architecture and additional pre-training data information.
|
23 |
- **[2023/11/24]** Update the related information of the pre-training data.
|
|
|
69 |
cat gptq_model-8bit-128g.safetensors.* > gptq_model-8bit-128g.safetensors
|
70 |
```
|
71 |
|
72 |
+
我们演示了如何使用 vLLM 来运行XVERSE-65B-Chat-GPTQ-Int8量化模型:
|
73 |
|
74 |
```python
|
75 |
from vllm import LLM, SamplingParams
|
|
|
104 |
cat gptq_model-8bit-128g.safetensors.* > gptq_model-8bit-128g.safetensors
|
105 |
```
|
106 |
|
107 |
+
We demonstrated how to use vLLM to run the XVERSE-65B-Chat-GPTQ-Int8 quantization model:
|
108 |
|
109 |
```python
|
110 |
from vllm import LLM, SamplingParams
|