File size: 1,836 Bytes
2b8770e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: google-t5/t5-large
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: adversarial_qa_dbert_based_on
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# adversarial_qa_dbert_based_on
This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1381
- Exact Match: 0.3467
- Bleu: 0.3083
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 8
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:|
| 1.0162 | 1.0 | 63 | 0.7607 | 0.2754 | 0.2749 |
| 0.3929 | 2.0 | 126 | 0.7943 | 0.2959 | 0.2412 |
| 0.1542 | 3.0 | 189 | 1.0053 | 0.3018 | 0.2720 |
| 0.0544 | 4.0 | 252 | 1.1005 | 0.3457 | 0.3185 |
| 0.0239 | 5.0 | 315 | 1.1381 | 0.3467 | 0.3083 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|