Wenda Xu
commited on
Commit
•
338afc4
1
Parent(s):
2825b5a
updates all files
Browse files- InstructScore.py +31 -13
- InstructScore_English/added_tokens.json +0 -3
- InstructScore_English/config.json +0 -24
- InstructScore_English/generation_config.json +0 -7
- InstructScore_English/latest +0 -1
- InstructScore_English/pytorch_model.bin +0 -3
- InstructScore_English/rng_state_0.pth +0 -3
- InstructScore_English/rng_state_1.pth +0 -3
- InstructScore_English/rng_state_2.pth +0 -3
- InstructScore_English/rng_state_3.pth +0 -3
- InstructScore_English/rng_state_4.pth +0 -3
- InstructScore_English/rng_state_5.pth +0 -3
- InstructScore_English/rng_state_6.pth +0 -3
- InstructScore_English/rng_state_7.pth +0 -3
- InstructScore_English/special_tokens_map.json +0 -6
- InstructScore_English/tokenizer.model +0 -3
- InstructScore_English/tokenizer_config.json +0 -34
- InstructScore_English/trainer_state.json +0 -1348
- InstructScore_English/training_args.bin +0 -3
- InstructScore_English/zero_to_fp32.py +0 -483
- InstructScore_Tok/special_tokens_map.json +0 -1
- InstructScore_Tok/tokenizer.model +0 -3
- InstructScore_Tok/tokenizer_config.json +0 -9
- README.md +6 -4
InstructScore.py
CHANGED
@@ -12,6 +12,7 @@ MAX_TARGET_LENGTH = 512
|
|
12 |
print("Max source length: ", MAX_SOURCE_LENGTH)
|
13 |
print("MAX target length: ", MAX_TARGET_LENGTH)
|
14 |
|
|
|
15 |
def smart_tokenizer_and_embedding_resize(
|
16 |
special_tokens_dict: Dict,
|
17 |
tokenizer: transformers.PreTrainedTokenizer,
|
@@ -28,14 +29,14 @@ def smart_tokenizer_and_embedding_resize(
|
|
28 |
}
|
29 |
)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
class InstructScore:
|
36 |
-
def __init__(self):
|
37 |
self.tokenizer = LlamaTokenizer.from_pretrained(
|
38 |
-
"
|
39 |
)
|
40 |
# enable batch inference by left padding
|
41 |
self.tokenizer.padding_side = "left"
|
@@ -44,12 +45,17 @@ class InstructScore:
|
|
44 |
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
45 |
tokenizer=self.tokenizer,
|
46 |
)
|
47 |
-
self.model = LlamaForCausalLM.from_pretrained(
|
|
|
|
|
48 |
self.model.eval()
|
|
|
49 |
def score(self, ref_ls, out_ls):
|
50 |
-
prompt_ls
|
51 |
-
|
52 |
-
errors don't lead to loss of meaning but will be noticed.
|
|
|
|
|
53 |
|
54 |
with torch.no_grad():
|
55 |
inputs = self.tokenizer(
|
@@ -69,17 +75,29 @@ class InstructScore:
|
|
69 |
skip_special_tokens=True,
|
70 |
clean_up_tokenization_spaces=True,
|
71 |
)
|
72 |
-
scores_ls = [
|
|
|
|
|
|
|
|
|
73 |
return batch_outputs, scores_ls
|
74 |
|
|
|
75 |
def main():
|
76 |
-
refs = [
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
scorer = InstructScore()
|
80 |
batch_outputs, scores_ls = scorer.score(refs, outs)
|
81 |
print(batch_outputs)
|
82 |
print(scores_ls)
|
83 |
|
|
|
84 |
if __name__ == "__main__":
|
85 |
main()
|
|
|
12 |
print("Max source length: ", MAX_SOURCE_LENGTH)
|
13 |
print("MAX target length: ", MAX_TARGET_LENGTH)
|
14 |
|
15 |
+
|
16 |
def smart_tokenizer_and_embedding_resize(
|
17 |
special_tokens_dict: Dict,
|
18 |
tokenizer: transformers.PreTrainedTokenizer,
|
|
|
29 |
}
|
30 |
)
|
31 |
|
32 |
+
|
33 |
+
device_id = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
34 |
+
|
35 |
|
36 |
class InstructScore:
|
37 |
+
def __init__(self):
|
38 |
self.tokenizer = LlamaTokenizer.from_pretrained(
|
39 |
+
"xu1998hz/InstructScore", model_max_length=MAX_SOURCE_LENGTH, use_fast=False
|
40 |
)
|
41 |
# enable batch inference by left padding
|
42 |
self.tokenizer.padding_side = "left"
|
|
|
45 |
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
46 |
tokenizer=self.tokenizer,
|
47 |
)
|
48 |
+
self.model = LlamaForCausalLM.from_pretrained("xu1998hz/InstructScore").to(
|
49 |
+
device_id
|
50 |
+
)
|
51 |
self.model.eval()
|
52 |
+
|
53 |
def score(self, ref_ls, out_ls):
|
54 |
+
prompt_ls = [
|
55 |
+
f'You are evaluating Chinese-to-English Machine translation task. The correct translation is "{ref}". The model generated translation is "{out}". Please identify all errors within each model output, up to a maximum of five. For each error, please give me the corresponding error type, major/minor label, error location of the model generated translation and explanation for the error. Major errors can confuse or mislead the reader due to significant change in meaning, while minor\
|
56 |
+
errors don\'t lead to loss of meaning but will be noticed.'
|
57 |
+
for ref, out in zip(ref_ls, out_ls)
|
58 |
+
]
|
59 |
|
60 |
with torch.no_grad():
|
61 |
inputs = self.tokenizer(
|
|
|
75 |
skip_special_tokens=True,
|
76 |
clean_up_tokenization_spaces=True,
|
77 |
)
|
78 |
+
scores_ls = [
|
79 |
+
(-1) * output.count("Major/minor: Minor")
|
80 |
+
+ (-5) * output.count("Major/minor: Major")
|
81 |
+
for output in batch_outputs
|
82 |
+
]
|
83 |
return batch_outputs, scores_ls
|
84 |
|
85 |
+
|
86 |
def main():
|
87 |
+
refs = [
|
88 |
+
"SEScore is a simple but effective next generation text generation evaluation metric",
|
89 |
+
"SEScore it really works",
|
90 |
+
]
|
91 |
+
outs = [
|
92 |
+
"SEScore is a simple effective text evaluation metric for next generation",
|
93 |
+
"SEScore is not working",
|
94 |
+
]
|
95 |
+
|
96 |
scorer = InstructScore()
|
97 |
batch_outputs, scores_ls = scorer.score(refs, outs)
|
98 |
print(batch_outputs)
|
99 |
print(scores_ls)
|
100 |
|
101 |
+
|
102 |
if __name__ == "__main__":
|
103 |
main()
|
InstructScore_English/added_tokens.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"[PAD]": 32000
|
3 |
-
}
|
|
|
|
|
|
|
|
InstructScore_English/config.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "decapoda-research/llama-7b-hf",
|
3 |
-
"architectures": [
|
4 |
-
"LlamaForCausalLM"
|
5 |
-
],
|
6 |
-
"bos_token_id": 0,
|
7 |
-
"eos_token_id": 1,
|
8 |
-
"hidden_act": "silu",
|
9 |
-
"hidden_size": 4096,
|
10 |
-
"initializer_range": 0.02,
|
11 |
-
"intermediate_size": 11008,
|
12 |
-
"max_position_embeddings": 2048,
|
13 |
-
"max_sequence_length": 2048,
|
14 |
-
"model_type": "llama",
|
15 |
-
"num_attention_heads": 32,
|
16 |
-
"num_hidden_layers": 32,
|
17 |
-
"pad_token_id": -1,
|
18 |
-
"rms_norm_eps": 1e-06,
|
19 |
-
"tie_word_embeddings": false,
|
20 |
-
"torch_dtype": "float16",
|
21 |
-
"transformers_version": "4.28.0.dev0",
|
22 |
-
"use_cache": true,
|
23 |
-
"vocab_size": 32001
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstructScore_English/generation_config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 0,
|
4 |
-
"eos_token_id": 1,
|
5 |
-
"pad_token_id": 0,
|
6 |
-
"transformers_version": "4.28.0.dev0"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstructScore_English/latest
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
global_step222
|
|
|
|
InstructScore_English/pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:275ee8dcae406d0cf4af5a06830a049419b441f034e370831a6a9ef90da84625
|
3 |
-
size 13476958625
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_0.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7e3c5cb412e12159a59afe5657ce4b5e0a06e7fb420bedbb5228fe1245702762
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_1.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:741230672078323886b763e522c728741456a587860909fc529ce815a7aca5ec
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_2.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4ea587886b41579993bb5d20c79047b968ae2d71d22ba4c739b07ce31d7486a6
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_3.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8ab727740f74dd67e60283d27b4339609a1dda888b067cc06520e2f1d7dc17db
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_4.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:85fbffd04f81c5419775f5b8507ac368aa0ff88b146755becf7b9cd26c139501
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_5.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fcfb5fd9b58d3febef1eee1e52cb6997af12bac5fccd4be5e31c38721f4c3410
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_6.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8f120fd79fe083c8bfcd736e4bd37c6fe37ba8dc492e550f309fb809413a218d
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/rng_state_7.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:aed17a3c5698176f919ced6408c261f11e642658a3bdc526ead16625e7bb4a6f
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
InstructScore_English/special_tokens_map.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "</s>",
|
3 |
-
"eos_token": "</s>",
|
4 |
-
"pad_token": "[PAD]",
|
5 |
-
"unk_token": "</s>"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstructScore_English/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
-
size 499723
|
|
|
|
|
|
|
|
InstructScore_English/tokenizer_config.json
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": true,
|
3 |
-
"add_eos_token": false,
|
4 |
-
"bos_token": {
|
5 |
-
"__type": "AddedToken",
|
6 |
-
"content": "",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": true,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false
|
11 |
-
},
|
12 |
-
"clean_up_tokenization_spaces": false,
|
13 |
-
"eos_token": {
|
14 |
-
"__type": "AddedToken",
|
15 |
-
"content": "",
|
16 |
-
"lstrip": false,
|
17 |
-
"normalized": true,
|
18 |
-
"rstrip": false,
|
19 |
-
"single_word": false
|
20 |
-
},
|
21 |
-
"model_max_length": 702,
|
22 |
-
"pad_token": null,
|
23 |
-
"padding_side": "right",
|
24 |
-
"sp_model_kwargs": {},
|
25 |
-
"tokenizer_class": "LlamaTokenizer",
|
26 |
-
"unk_token": {
|
27 |
-
"__type": "AddedToken",
|
28 |
-
"content": "",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": true,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false
|
33 |
-
}
|
34 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstructScore_English/trainer_state.json
DELETED
@@ -1,1348 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 2.9873843566021865,
|
5 |
-
"global_step": 222,
|
6 |
-
"is_hyper_param_search": false,
|
7 |
-
"is_local_process_zero": true,
|
8 |
-
"is_world_process_zero": true,
|
9 |
-
"log_history": [
|
10 |
-
{
|
11 |
-
"epoch": 0.01,
|
12 |
-
"learning_rate": 0,
|
13 |
-
"loss": 9.0082,
|
14 |
-
"step": 1
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"epoch": 0.03,
|
18 |
-
"learning_rate": 0,
|
19 |
-
"loss": 8.6216,
|
20 |
-
"step": 2
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"epoch": 0.04,
|
24 |
-
"learning_rate": 0,
|
25 |
-
"loss": 8.9495,
|
26 |
-
"step": 3
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"epoch": 0.05,
|
30 |
-
"learning_rate": 0,
|
31 |
-
"loss": 9.3486,
|
32 |
-
"step": 4
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"epoch": 0.07,
|
36 |
-
"learning_rate": 0,
|
37 |
-
"loss": 9.1724,
|
38 |
-
"step": 5
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"epoch": 0.08,
|
42 |
-
"learning_rate": 0,
|
43 |
-
"loss": 8.6433,
|
44 |
-
"step": 6
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"epoch": 0.09,
|
48 |
-
"learning_rate": 0.0,
|
49 |
-
"loss": 8.872,
|
50 |
-
"step": 7
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"epoch": 0.11,
|
54 |
-
"learning_rate": 0.0,
|
55 |
-
"loss": 10.083,
|
56 |
-
"step": 8
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"epoch": 0.12,
|
60 |
-
"learning_rate": 0.0,
|
61 |
-
"loss": 10.3374,
|
62 |
-
"step": 9
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"epoch": 0.13,
|
66 |
-
"learning_rate": 2e-05,
|
67 |
-
"loss": 9.8785,
|
68 |
-
"step": 10
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"epoch": 0.15,
|
72 |
-
"learning_rate": 2e-05,
|
73 |
-
"loss": 10.5295,
|
74 |
-
"step": 11
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"epoch": 0.16,
|
78 |
-
"learning_rate": 2e-05,
|
79 |
-
"loss": 7.6001,
|
80 |
-
"step": 12
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"epoch": 0.17,
|
84 |
-
"learning_rate": 2e-05,
|
85 |
-
"loss": 7.0393,
|
86 |
-
"step": 13
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"epoch": 0.19,
|
90 |
-
"learning_rate": 2e-05,
|
91 |
-
"loss": 6.9884,
|
92 |
-
"step": 14
|
93 |
-
},
|
94 |
-
{
|
95 |
-
"epoch": 0.2,
|
96 |
-
"learning_rate": 2e-05,
|
97 |
-
"loss": 6.9941,
|
98 |
-
"step": 15
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"epoch": 0.22,
|
102 |
-
"learning_rate": 2e-05,
|
103 |
-
"loss": 7.235,
|
104 |
-
"step": 16
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"epoch": 0.23,
|
108 |
-
"learning_rate": 2e-05,
|
109 |
-
"loss": 6.7456,
|
110 |
-
"step": 17
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"epoch": 0.24,
|
114 |
-
"learning_rate": 2e-05,
|
115 |
-
"loss": 6.7632,
|
116 |
-
"step": 18
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"epoch": 0.26,
|
120 |
-
"learning_rate": 2e-05,
|
121 |
-
"loss": 6.3373,
|
122 |
-
"step": 19
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"epoch": 0.27,
|
126 |
-
"learning_rate": 2e-05,
|
127 |
-
"loss": 6.5851,
|
128 |
-
"step": 20
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"epoch": 0.28,
|
132 |
-
"learning_rate": 2e-05,
|
133 |
-
"loss": 6.8799,
|
134 |
-
"step": 21
|
135 |
-
},
|
136 |
-
{
|
137 |
-
"epoch": 0.3,
|
138 |
-
"learning_rate": 2e-05,
|
139 |
-
"loss": 6.0525,
|
140 |
-
"step": 22
|
141 |
-
},
|
142 |
-
{
|
143 |
-
"epoch": 0.31,
|
144 |
-
"learning_rate": 2e-05,
|
145 |
-
"loss": 6.178,
|
146 |
-
"step": 23
|
147 |
-
},
|
148 |
-
{
|
149 |
-
"epoch": 0.32,
|
150 |
-
"learning_rate": 2e-05,
|
151 |
-
"loss": 6.6378,
|
152 |
-
"step": 24
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"epoch": 0.34,
|
156 |
-
"learning_rate": 2e-05,
|
157 |
-
"loss": 6.1607,
|
158 |
-
"step": 25
|
159 |
-
},
|
160 |
-
{
|
161 |
-
"epoch": 0.35,
|
162 |
-
"learning_rate": 2e-05,
|
163 |
-
"loss": 6.2084,
|
164 |
-
"step": 26
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"epoch": 0.36,
|
168 |
-
"learning_rate": 2e-05,
|
169 |
-
"loss": 5.7216,
|
170 |
-
"step": 27
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"epoch": 0.38,
|
174 |
-
"learning_rate": 2e-05,
|
175 |
-
"loss": 5.5294,
|
176 |
-
"step": 28
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"epoch": 0.39,
|
180 |
-
"learning_rate": 2e-05,
|
181 |
-
"loss": 5.6123,
|
182 |
-
"step": 29
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"epoch": 0.4,
|
186 |
-
"learning_rate": 2e-05,
|
187 |
-
"loss": 5.3022,
|
188 |
-
"step": 30
|
189 |
-
},
|
190 |
-
{
|
191 |
-
"epoch": 0.42,
|
192 |
-
"learning_rate": 2e-05,
|
193 |
-
"loss": 5.2346,
|
194 |
-
"step": 31
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"epoch": 0.43,
|
198 |
-
"learning_rate": 2e-05,
|
199 |
-
"loss": 5.268,
|
200 |
-
"step": 32
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"epoch": 0.44,
|
204 |
-
"learning_rate": 2e-05,
|
205 |
-
"loss": 4.8788,
|
206 |
-
"step": 33
|
207 |
-
},
|
208 |
-
{
|
209 |
-
"epoch": 0.46,
|
210 |
-
"learning_rate": 2e-05,
|
211 |
-
"loss": 4.8944,
|
212 |
-
"step": 34
|
213 |
-
},
|
214 |
-
{
|
215 |
-
"epoch": 0.47,
|
216 |
-
"learning_rate": 2e-05,
|
217 |
-
"loss": 4.487,
|
218 |
-
"step": 35
|
219 |
-
},
|
220 |
-
{
|
221 |
-
"epoch": 0.48,
|
222 |
-
"learning_rate": 2e-05,
|
223 |
-
"loss": 4.3159,
|
224 |
-
"step": 36
|
225 |
-
},
|
226 |
-
{
|
227 |
-
"epoch": 0.5,
|
228 |
-
"learning_rate": 2e-05,
|
229 |
-
"loss": 4.1472,
|
230 |
-
"step": 37
|
231 |
-
},
|
232 |
-
{
|
233 |
-
"epoch": 0.51,
|
234 |
-
"learning_rate": 2e-05,
|
235 |
-
"loss": 4.2212,
|
236 |
-
"step": 38
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"epoch": 0.52,
|
240 |
-
"learning_rate": 2e-05,
|
241 |
-
"loss": 4.1312,
|
242 |
-
"step": 39
|
243 |
-
},
|
244 |
-
{
|
245 |
-
"epoch": 0.54,
|
246 |
-
"learning_rate": 2e-05,
|
247 |
-
"loss": 3.9116,
|
248 |
-
"step": 40
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"epoch": 0.55,
|
252 |
-
"learning_rate": 2e-05,
|
253 |
-
"loss": 3.8727,
|
254 |
-
"step": 41
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"epoch": 0.57,
|
258 |
-
"learning_rate": 2e-05,
|
259 |
-
"loss": 3.4962,
|
260 |
-
"step": 42
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"epoch": 0.58,
|
264 |
-
"learning_rate": 2e-05,
|
265 |
-
"loss": 3.2736,
|
266 |
-
"step": 43
|
267 |
-
},
|
268 |
-
{
|
269 |
-
"epoch": 0.59,
|
270 |
-
"learning_rate": 2e-05,
|
271 |
-
"loss": 3.1902,
|
272 |
-
"step": 44
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"epoch": 0.61,
|
276 |
-
"learning_rate": 2e-05,
|
277 |
-
"loss": 3.0781,
|
278 |
-
"step": 45
|
279 |
-
},
|
280 |
-
{
|
281 |
-
"epoch": 0.62,
|
282 |
-
"learning_rate": 2e-05,
|
283 |
-
"loss": 2.9503,
|
284 |
-
"step": 46
|
285 |
-
},
|
286 |
-
{
|
287 |
-
"epoch": 0.63,
|
288 |
-
"learning_rate": 2e-05,
|
289 |
-
"loss": 2.6742,
|
290 |
-
"step": 47
|
291 |
-
},
|
292 |
-
{
|
293 |
-
"epoch": 0.65,
|
294 |
-
"learning_rate": 2e-05,
|
295 |
-
"loss": 2.5908,
|
296 |
-
"step": 48
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"epoch": 0.66,
|
300 |
-
"learning_rate": 2e-05,
|
301 |
-
"loss": 2.4428,
|
302 |
-
"step": 49
|
303 |
-
},
|
304 |
-
{
|
305 |
-
"epoch": 0.67,
|
306 |
-
"learning_rate": 2e-05,
|
307 |
-
"loss": 2.1305,
|
308 |
-
"step": 50
|
309 |
-
},
|
310 |
-
{
|
311 |
-
"epoch": 0.69,
|
312 |
-
"learning_rate": 2e-05,
|
313 |
-
"loss": 2.0908,
|
314 |
-
"step": 51
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"epoch": 0.7,
|
318 |
-
"learning_rate": 2e-05,
|
319 |
-
"loss": 1.8319,
|
320 |
-
"step": 52
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"epoch": 0.71,
|
324 |
-
"learning_rate": 2e-05,
|
325 |
-
"loss": 1.6784,
|
326 |
-
"step": 53
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"epoch": 0.73,
|
330 |
-
"learning_rate": 2e-05,
|
331 |
-
"loss": 1.553,
|
332 |
-
"step": 54
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"epoch": 0.74,
|
336 |
-
"learning_rate": 2e-05,
|
337 |
-
"loss": 1.3679,
|
338 |
-
"step": 55
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"epoch": 0.75,
|
342 |
-
"learning_rate": 2e-05,
|
343 |
-
"loss": 1.2306,
|
344 |
-
"step": 56
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"epoch": 0.77,
|
348 |
-
"learning_rate": 2e-05,
|
349 |
-
"loss": 1.0531,
|
350 |
-
"step": 57
|
351 |
-
},
|
352 |
-
{
|
353 |
-
"epoch": 0.78,
|
354 |
-
"learning_rate": 2e-05,
|
355 |
-
"loss": 0.9721,
|
356 |
-
"step": 58
|
357 |
-
},
|
358 |
-
{
|
359 |
-
"epoch": 0.79,
|
360 |
-
"learning_rate": 2e-05,
|
361 |
-
"loss": 0.8153,
|
362 |
-
"step": 59
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"epoch": 0.81,
|
366 |
-
"learning_rate": 2e-05,
|
367 |
-
"loss": 0.6768,
|
368 |
-
"step": 60
|
369 |
-
},
|
370 |
-
{
|
371 |
-
"epoch": 0.82,
|
372 |
-
"learning_rate": 2e-05,
|
373 |
-
"loss": 0.5962,
|
374 |
-
"step": 61
|
375 |
-
},
|
376 |
-
{
|
377 |
-
"epoch": 0.83,
|
378 |
-
"learning_rate": 2e-05,
|
379 |
-
"loss": 0.5061,
|
380 |
-
"step": 62
|
381 |
-
},
|
382 |
-
{
|
383 |
-
"epoch": 0.85,
|
384 |
-
"learning_rate": 2e-05,
|
385 |
-
"loss": 0.4319,
|
386 |
-
"step": 63
|
387 |
-
},
|
388 |
-
{
|
389 |
-
"epoch": 0.86,
|
390 |
-
"learning_rate": 2e-05,
|
391 |
-
"loss": 0.372,
|
392 |
-
"step": 64
|
393 |
-
},
|
394 |
-
{
|
395 |
-
"epoch": 0.87,
|
396 |
-
"learning_rate": 2e-05,
|
397 |
-
"loss": 0.327,
|
398 |
-
"step": 65
|
399 |
-
},
|
400 |
-
{
|
401 |
-
"epoch": 0.89,
|
402 |
-
"learning_rate": 2e-05,
|
403 |
-
"loss": 0.2799,
|
404 |
-
"step": 66
|
405 |
-
},
|
406 |
-
{
|
407 |
-
"epoch": 0.9,
|
408 |
-
"learning_rate": 2e-05,
|
409 |
-
"loss": 0.2455,
|
410 |
-
"step": 67
|
411 |
-
},
|
412 |
-
{
|
413 |
-
"epoch": 0.92,
|
414 |
-
"learning_rate": 2e-05,
|
415 |
-
"loss": 0.2267,
|
416 |
-
"step": 68
|
417 |
-
},
|
418 |
-
{
|
419 |
-
"epoch": 0.93,
|
420 |
-
"learning_rate": 2e-05,
|
421 |
-
"loss": 0.2177,
|
422 |
-
"step": 69
|
423 |
-
},
|
424 |
-
{
|
425 |
-
"epoch": 0.94,
|
426 |
-
"learning_rate": 2e-05,
|
427 |
-
"loss": 0.2029,
|
428 |
-
"step": 70
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"epoch": 0.96,
|
432 |
-
"learning_rate": 2e-05,
|
433 |
-
"loss": 0.1958,
|
434 |
-
"step": 71
|
435 |
-
},
|
436 |
-
{
|
437 |
-
"epoch": 0.97,
|
438 |
-
"learning_rate": 2e-05,
|
439 |
-
"loss": 0.1748,
|
440 |
-
"step": 72
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"epoch": 0.98,
|
444 |
-
"learning_rate": 2e-05,
|
445 |
-
"loss": 0.1772,
|
446 |
-
"step": 73
|
447 |
-
},
|
448 |
-
{
|
449 |
-
"epoch": 1.0,
|
450 |
-
"learning_rate": 2e-05,
|
451 |
-
"loss": 0.1639,
|
452 |
-
"step": 74
|
453 |
-
},
|
454 |
-
{
|
455 |
-
"epoch": 1.01,
|
456 |
-
"learning_rate": 2e-05,
|
457 |
-
"loss": 0.1495,
|
458 |
-
"step": 75
|
459 |
-
},
|
460 |
-
{
|
461 |
-
"epoch": 1.02,
|
462 |
-
"learning_rate": 2e-05,
|
463 |
-
"loss": 0.1595,
|
464 |
-
"step": 76
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"epoch": 1.04,
|
468 |
-
"learning_rate": 2e-05,
|
469 |
-
"loss": 0.141,
|
470 |
-
"step": 77
|
471 |
-
},
|
472 |
-
{
|
473 |
-
"epoch": 1.05,
|
474 |
-
"learning_rate": 2e-05,
|
475 |
-
"loss": 0.1411,
|
476 |
-
"step": 78
|
477 |
-
},
|
478 |
-
{
|
479 |
-
"epoch": 1.06,
|
480 |
-
"learning_rate": 2e-05,
|
481 |
-
"loss": 0.1456,
|
482 |
-
"step": 79
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"epoch": 1.08,
|
486 |
-
"learning_rate": 2e-05,
|
487 |
-
"loss": 0.1396,
|
488 |
-
"step": 80
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"epoch": 1.09,
|
492 |
-
"learning_rate": 2e-05,
|
493 |
-
"loss": 0.1276,
|
494 |
-
"step": 81
|
495 |
-
},
|
496 |
-
{
|
497 |
-
"epoch": 1.1,
|
498 |
-
"learning_rate": 2e-05,
|
499 |
-
"loss": 0.1285,
|
500 |
-
"step": 82
|
501 |
-
},
|
502 |
-
{
|
503 |
-
"epoch": 1.12,
|
504 |
-
"learning_rate": 2e-05,
|
505 |
-
"loss": 0.1274,
|
506 |
-
"step": 83
|
507 |
-
},
|
508 |
-
{
|
509 |
-
"epoch": 1.13,
|
510 |
-
"learning_rate": 2e-05,
|
511 |
-
"loss": 0.1315,
|
512 |
-
"step": 84
|
513 |
-
},
|
514 |
-
{
|
515 |
-
"epoch": 1.14,
|
516 |
-
"learning_rate": 2e-05,
|
517 |
-
"loss": 0.1283,
|
518 |
-
"step": 85
|
519 |
-
},
|
520 |
-
{
|
521 |
-
"epoch": 1.16,
|
522 |
-
"learning_rate": 2e-05,
|
523 |
-
"loss": 0.1055,
|
524 |
-
"step": 86
|
525 |
-
},
|
526 |
-
{
|
527 |
-
"epoch": 1.17,
|
528 |
-
"learning_rate": 2e-05,
|
529 |
-
"loss": 0.1164,
|
530 |
-
"step": 87
|
531 |
-
},
|
532 |
-
{
|
533 |
-
"epoch": 1.18,
|
534 |
-
"learning_rate": 2e-05,
|
535 |
-
"loss": 0.1306,
|
536 |
-
"step": 88
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"epoch": 1.2,
|
540 |
-
"learning_rate": 2e-05,
|
541 |
-
"loss": 0.121,
|
542 |
-
"step": 89
|
543 |
-
},
|
544 |
-
{
|
545 |
-
"epoch": 1.21,
|
546 |
-
"learning_rate": 2e-05,
|
547 |
-
"loss": 0.1275,
|
548 |
-
"step": 90
|
549 |
-
},
|
550 |
-
{
|
551 |
-
"epoch": 1.22,
|
552 |
-
"learning_rate": 2e-05,
|
553 |
-
"loss": 0.1081,
|
554 |
-
"step": 91
|
555 |
-
},
|
556 |
-
{
|
557 |
-
"epoch": 1.24,
|
558 |
-
"learning_rate": 2e-05,
|
559 |
-
"loss": 0.1114,
|
560 |
-
"step": 92
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"epoch": 1.25,
|
564 |
-
"learning_rate": 2e-05,
|
565 |
-
"loss": 0.1186,
|
566 |
-
"step": 93
|
567 |
-
},
|
568 |
-
{
|
569 |
-
"epoch": 1.26,
|
570 |
-
"learning_rate": 2e-05,
|
571 |
-
"loss": 0.1097,
|
572 |
-
"step": 94
|
573 |
-
},
|
574 |
-
{
|
575 |
-
"epoch": 1.28,
|
576 |
-
"learning_rate": 2e-05,
|
577 |
-
"loss": 0.1163,
|
578 |
-
"step": 95
|
579 |
-
},
|
580 |
-
{
|
581 |
-
"epoch": 1.29,
|
582 |
-
"learning_rate": 2e-05,
|
583 |
-
"loss": 0.113,
|
584 |
-
"step": 96
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"epoch": 1.31,
|
588 |
-
"learning_rate": 2e-05,
|
589 |
-
"loss": 0.1217,
|
590 |
-
"step": 97
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"epoch": 1.32,
|
594 |
-
"learning_rate": 2e-05,
|
595 |
-
"loss": 0.1132,
|
596 |
-
"step": 98
|
597 |
-
},
|
598 |
-
{
|
599 |
-
"epoch": 1.33,
|
600 |
-
"learning_rate": 2e-05,
|
601 |
-
"loss": 0.1203,
|
602 |
-
"step": 99
|
603 |
-
},
|
604 |
-
{
|
605 |
-
"epoch": 1.35,
|
606 |
-
"learning_rate": 2e-05,
|
607 |
-
"loss": 0.1094,
|
608 |
-
"step": 100
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"epoch": 1.36,
|
612 |
-
"learning_rate": 2e-05,
|
613 |
-
"loss": 0.1279,
|
614 |
-
"step": 101
|
615 |
-
},
|
616 |
-
{
|
617 |
-
"epoch": 1.37,
|
618 |
-
"learning_rate": 2e-05,
|
619 |
-
"loss": 0.1043,
|
620 |
-
"step": 102
|
621 |
-
},
|
622 |
-
{
|
623 |
-
"epoch": 1.39,
|
624 |
-
"learning_rate": 2e-05,
|
625 |
-
"loss": 0.1097,
|
626 |
-
"step": 103
|
627 |
-
},
|
628 |
-
{
|
629 |
-
"epoch": 1.4,
|
630 |
-
"learning_rate": 2e-05,
|
631 |
-
"loss": 0.1125,
|
632 |
-
"step": 104
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"epoch": 1.41,
|
636 |
-
"learning_rate": 2e-05,
|
637 |
-
"loss": 0.118,
|
638 |
-
"step": 105
|
639 |
-
},
|
640 |
-
{
|
641 |
-
"epoch": 1.43,
|
642 |
-
"learning_rate": 2e-05,
|
643 |
-
"loss": 0.0962,
|
644 |
-
"step": 106
|
645 |
-
},
|
646 |
-
{
|
647 |
-
"epoch": 1.44,
|
648 |
-
"learning_rate": 2e-05,
|
649 |
-
"loss": 0.1093,
|
650 |
-
"step": 107
|
651 |
-
},
|
652 |
-
{
|
653 |
-
"epoch": 1.45,
|
654 |
-
"learning_rate": 2e-05,
|
655 |
-
"loss": 0.1219,
|
656 |
-
"step": 108
|
657 |
-
},
|
658 |
-
{
|
659 |
-
"epoch": 1.47,
|
660 |
-
"learning_rate": 2e-05,
|
661 |
-
"loss": 0.1046,
|
662 |
-
"step": 109
|
663 |
-
},
|
664 |
-
{
|
665 |
-
"epoch": 1.48,
|
666 |
-
"learning_rate": 2e-05,
|
667 |
-
"loss": 0.1017,
|
668 |
-
"step": 110
|
669 |
-
},
|
670 |
-
{
|
671 |
-
"epoch": 1.49,
|
672 |
-
"learning_rate": 2e-05,
|
673 |
-
"loss": 0.1044,
|
674 |
-
"step": 111
|
675 |
-
},
|
676 |
-
{
|
677 |
-
"epoch": 1.51,
|
678 |
-
"learning_rate": 2e-05,
|
679 |
-
"loss": 0.1084,
|
680 |
-
"step": 112
|
681 |
-
},
|
682 |
-
{
|
683 |
-
"epoch": 1.52,
|
684 |
-
"learning_rate": 2e-05,
|
685 |
-
"loss": 0.1158,
|
686 |
-
"step": 113
|
687 |
-
},
|
688 |
-
{
|
689 |
-
"epoch": 1.53,
|
690 |
-
"learning_rate": 2e-05,
|
691 |
-
"loss": 0.1074,
|
692 |
-
"step": 114
|
693 |
-
},
|
694 |
-
{
|
695 |
-
"epoch": 1.55,
|
696 |
-
"learning_rate": 2e-05,
|
697 |
-
"loss": 0.1075,
|
698 |
-
"step": 115
|
699 |
-
},
|
700 |
-
{
|
701 |
-
"epoch": 1.56,
|
702 |
-
"learning_rate": 2e-05,
|
703 |
-
"loss": 0.1052,
|
704 |
-
"step": 116
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"epoch": 1.57,
|
708 |
-
"learning_rate": 2e-05,
|
709 |
-
"loss": 0.1017,
|
710 |
-
"step": 117
|
711 |
-
},
|
712 |
-
{
|
713 |
-
"epoch": 1.59,
|
714 |
-
"learning_rate": 2e-05,
|
715 |
-
"loss": 0.0992,
|
716 |
-
"step": 118
|
717 |
-
},
|
718 |
-
{
|
719 |
-
"epoch": 1.6,
|
720 |
-
"learning_rate": 2e-05,
|
721 |
-
"loss": 0.1096,
|
722 |
-
"step": 119
|
723 |
-
},
|
724 |
-
{
|
725 |
-
"epoch": 1.61,
|
726 |
-
"learning_rate": 2e-05,
|
727 |
-
"loss": 0.1272,
|
728 |
-
"step": 120
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"epoch": 1.63,
|
732 |
-
"learning_rate": 2e-05,
|
733 |
-
"loss": 0.1049,
|
734 |
-
"step": 121
|
735 |
-
},
|
736 |
-
{
|
737 |
-
"epoch": 1.64,
|
738 |
-
"learning_rate": 2e-05,
|
739 |
-
"loss": 0.0998,
|
740 |
-
"step": 122
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"epoch": 1.66,
|
744 |
-
"learning_rate": 2e-05,
|
745 |
-
"loss": 0.1052,
|
746 |
-
"step": 123
|
747 |
-
},
|
748 |
-
{
|
749 |
-
"epoch": 1.67,
|
750 |
-
"learning_rate": 2e-05,
|
751 |
-
"loss": 0.1177,
|
752 |
-
"step": 124
|
753 |
-
},
|
754 |
-
{
|
755 |
-
"epoch": 1.68,
|
756 |
-
"learning_rate": 2e-05,
|
757 |
-
"loss": 0.1052,
|
758 |
-
"step": 125
|
759 |
-
},
|
760 |
-
{
|
761 |
-
"epoch": 1.7,
|
762 |
-
"learning_rate": 2e-05,
|
763 |
-
"loss": 0.0997,
|
764 |
-
"step": 126
|
765 |
-
},
|
766 |
-
{
|
767 |
-
"epoch": 1.71,
|
768 |
-
"learning_rate": 2e-05,
|
769 |
-
"loss": 0.1115,
|
770 |
-
"step": 127
|
771 |
-
},
|
772 |
-
{
|
773 |
-
"epoch": 1.72,
|
774 |
-
"learning_rate": 2e-05,
|
775 |
-
"loss": 0.109,
|
776 |
-
"step": 128
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"epoch": 1.74,
|
780 |
-
"learning_rate": 2e-05,
|
781 |
-
"loss": 0.1094,
|
782 |
-
"step": 129
|
783 |
-
},
|
784 |
-
{
|
785 |
-
"epoch": 1.75,
|
786 |
-
"learning_rate": 2e-05,
|
787 |
-
"loss": 0.0988,
|
788 |
-
"step": 130
|
789 |
-
},
|
790 |
-
{
|
791 |
-
"epoch": 1.76,
|
792 |
-
"learning_rate": 2e-05,
|
793 |
-
"loss": 0.1088,
|
794 |
-
"step": 131
|
795 |
-
},
|
796 |
-
{
|
797 |
-
"epoch": 1.78,
|
798 |
-
"learning_rate": 2e-05,
|
799 |
-
"loss": 0.0988,
|
800 |
-
"step": 132
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"epoch": 1.79,
|
804 |
-
"learning_rate": 2e-05,
|
805 |
-
"loss": 0.0931,
|
806 |
-
"step": 133
|
807 |
-
},
|
808 |
-
{
|
809 |
-
"epoch": 1.8,
|
810 |
-
"learning_rate": 2e-05,
|
811 |
-
"loss": 0.0989,
|
812 |
-
"step": 134
|
813 |
-
},
|
814 |
-
{
|
815 |
-
"epoch": 1.82,
|
816 |
-
"learning_rate": 2e-05,
|
817 |
-
"loss": 0.1099,
|
818 |
-
"step": 135
|
819 |
-
},
|
820 |
-
{
|
821 |
-
"epoch": 1.83,
|
822 |
-
"learning_rate": 2e-05,
|
823 |
-
"loss": 0.107,
|
824 |
-
"step": 136
|
825 |
-
},
|
826 |
-
{
|
827 |
-
"epoch": 1.84,
|
828 |
-
"learning_rate": 2e-05,
|
829 |
-
"loss": 0.0991,
|
830 |
-
"step": 137
|
831 |
-
},
|
832 |
-
{
|
833 |
-
"epoch": 1.86,
|
834 |
-
"learning_rate": 2e-05,
|
835 |
-
"loss": 0.1045,
|
836 |
-
"step": 138
|
837 |
-
},
|
838 |
-
{
|
839 |
-
"epoch": 1.87,
|
840 |
-
"learning_rate": 2e-05,
|
841 |
-
"loss": 0.1112,
|
842 |
-
"step": 139
|
843 |
-
},
|
844 |
-
{
|
845 |
-
"epoch": 1.88,
|
846 |
-
"learning_rate": 2e-05,
|
847 |
-
"loss": 0.1128,
|
848 |
-
"step": 140
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"epoch": 1.9,
|
852 |
-
"learning_rate": 2e-05,
|
853 |
-
"loss": 0.1106,
|
854 |
-
"step": 141
|
855 |
-
},
|
856 |
-
{
|
857 |
-
"epoch": 1.91,
|
858 |
-
"learning_rate": 2e-05,
|
859 |
-
"loss": 0.0934,
|
860 |
-
"step": 142
|
861 |
-
},
|
862 |
-
{
|
863 |
-
"epoch": 1.92,
|
864 |
-
"learning_rate": 2e-05,
|
865 |
-
"loss": 0.1105,
|
866 |
-
"step": 143
|
867 |
-
},
|
868 |
-
{
|
869 |
-
"epoch": 1.94,
|
870 |
-
"learning_rate": 2e-05,
|
871 |
-
"loss": 0.1024,
|
872 |
-
"step": 144
|
873 |
-
},
|
874 |
-
{
|
875 |
-
"epoch": 1.95,
|
876 |
-
"learning_rate": 2e-05,
|
877 |
-
"loss": 0.0985,
|
878 |
-
"step": 145
|
879 |
-
},
|
880 |
-
{
|
881 |
-
"epoch": 1.96,
|
882 |
-
"learning_rate": 2e-05,
|
883 |
-
"loss": 0.1051,
|
884 |
-
"step": 146
|
885 |
-
},
|
886 |
-
{
|
887 |
-
"epoch": 1.98,
|
888 |
-
"learning_rate": 2e-05,
|
889 |
-
"loss": 0.0955,
|
890 |
-
"step": 147
|
891 |
-
},
|
892 |
-
{
|
893 |
-
"epoch": 1.99,
|
894 |
-
"learning_rate": 2e-05,
|
895 |
-
"loss": 0.0915,
|
896 |
-
"step": 148
|
897 |
-
},
|
898 |
-
{
|
899 |
-
"epoch": 2.01,
|
900 |
-
"learning_rate": 2e-05,
|
901 |
-
"loss": 0.0985,
|
902 |
-
"step": 149
|
903 |
-
},
|
904 |
-
{
|
905 |
-
"epoch": 2.02,
|
906 |
-
"learning_rate": 2e-05,
|
907 |
-
"loss": 0.0678,
|
908 |
-
"step": 150
|
909 |
-
},
|
910 |
-
{
|
911 |
-
"epoch": 2.03,
|
912 |
-
"learning_rate": 2e-05,
|
913 |
-
"loss": 0.0667,
|
914 |
-
"step": 151
|
915 |
-
},
|
916 |
-
{
|
917 |
-
"epoch": 2.05,
|
918 |
-
"learning_rate": 2e-05,
|
919 |
-
"loss": 0.0706,
|
920 |
-
"step": 152
|
921 |
-
},
|
922 |
-
{
|
923 |
-
"epoch": 2.06,
|
924 |
-
"learning_rate": 2e-05,
|
925 |
-
"loss": 0.0689,
|
926 |
-
"step": 153
|
927 |
-
},
|
928 |
-
{
|
929 |
-
"epoch": 2.07,
|
930 |
-
"learning_rate": 2e-05,
|
931 |
-
"loss": 0.0661,
|
932 |
-
"step": 154
|
933 |
-
},
|
934 |
-
{
|
935 |
-
"epoch": 2.09,
|
936 |
-
"learning_rate": 2e-05,
|
937 |
-
"loss": 0.0705,
|
938 |
-
"step": 155
|
939 |
-
},
|
940 |
-
{
|
941 |
-
"epoch": 2.1,
|
942 |
-
"learning_rate": 2e-05,
|
943 |
-
"loss": 0.077,
|
944 |
-
"step": 156
|
945 |
-
},
|
946 |
-
{
|
947 |
-
"epoch": 2.11,
|
948 |
-
"learning_rate": 2e-05,
|
949 |
-
"loss": 0.0605,
|
950 |
-
"step": 157
|
951 |
-
},
|
952 |
-
{
|
953 |
-
"epoch": 2.13,
|
954 |
-
"learning_rate": 2e-05,
|
955 |
-
"loss": 0.0653,
|
956 |
-
"step": 158
|
957 |
-
},
|
958 |
-
{
|
959 |
-
"epoch": 2.14,
|
960 |
-
"learning_rate": 2e-05,
|
961 |
-
"loss": 0.07,
|
962 |
-
"step": 159
|
963 |
-
},
|
964 |
-
{
|
965 |
-
"epoch": 2.15,
|
966 |
-
"learning_rate": 2e-05,
|
967 |
-
"loss": 0.0694,
|
968 |
-
"step": 160
|
969 |
-
},
|
970 |
-
{
|
971 |
-
"epoch": 2.17,
|
972 |
-
"learning_rate": 2e-05,
|
973 |
-
"loss": 0.0655,
|
974 |
-
"step": 161
|
975 |
-
},
|
976 |
-
{
|
977 |
-
"epoch": 2.18,
|
978 |
-
"learning_rate": 2e-05,
|
979 |
-
"loss": 0.061,
|
980 |
-
"step": 162
|
981 |
-
},
|
982 |
-
{
|
983 |
-
"epoch": 2.19,
|
984 |
-
"learning_rate": 2e-05,
|
985 |
-
"loss": 0.0799,
|
986 |
-
"step": 163
|
987 |
-
},
|
988 |
-
{
|
989 |
-
"epoch": 2.21,
|
990 |
-
"learning_rate": 2e-05,
|
991 |
-
"loss": 0.0637,
|
992 |
-
"step": 164
|
993 |
-
},
|
994 |
-
{
|
995 |
-
"epoch": 2.22,
|
996 |
-
"learning_rate": 2e-05,
|
997 |
-
"loss": 0.0711,
|
998 |
-
"step": 165
|
999 |
-
},
|
1000 |
-
{
|
1001 |
-
"epoch": 2.23,
|
1002 |
-
"learning_rate": 2e-05,
|
1003 |
-
"loss": 0.0668,
|
1004 |
-
"step": 166
|
1005 |
-
},
|
1006 |
-
{
|
1007 |
-
"epoch": 2.25,
|
1008 |
-
"learning_rate": 2e-05,
|
1009 |
-
"loss": 0.0699,
|
1010 |
-
"step": 167
|
1011 |
-
},
|
1012 |
-
{
|
1013 |
-
"epoch": 2.26,
|
1014 |
-
"learning_rate": 2e-05,
|
1015 |
-
"loss": 0.0748,
|
1016 |
-
"step": 168
|
1017 |
-
},
|
1018 |
-
{
|
1019 |
-
"epoch": 2.27,
|
1020 |
-
"learning_rate": 2e-05,
|
1021 |
-
"loss": 0.0614,
|
1022 |
-
"step": 169
|
1023 |
-
},
|
1024 |
-
{
|
1025 |
-
"epoch": 2.29,
|
1026 |
-
"learning_rate": 2e-05,
|
1027 |
-
"loss": 0.0676,
|
1028 |
-
"step": 170
|
1029 |
-
},
|
1030 |
-
{
|
1031 |
-
"epoch": 2.3,
|
1032 |
-
"learning_rate": 2e-05,
|
1033 |
-
"loss": 0.0628,
|
1034 |
-
"step": 171
|
1035 |
-
},
|
1036 |
-
{
|
1037 |
-
"epoch": 2.31,
|
1038 |
-
"learning_rate": 2e-05,
|
1039 |
-
"loss": 0.0642,
|
1040 |
-
"step": 172
|
1041 |
-
},
|
1042 |
-
{
|
1043 |
-
"epoch": 2.33,
|
1044 |
-
"learning_rate": 2e-05,
|
1045 |
-
"loss": 0.0678,
|
1046 |
-
"step": 173
|
1047 |
-
},
|
1048 |
-
{
|
1049 |
-
"epoch": 2.34,
|
1050 |
-
"learning_rate": 2e-05,
|
1051 |
-
"loss": 0.0629,
|
1052 |
-
"step": 174
|
1053 |
-
},
|
1054 |
-
{
|
1055 |
-
"epoch": 2.35,
|
1056 |
-
"learning_rate": 2e-05,
|
1057 |
-
"loss": 0.0645,
|
1058 |
-
"step": 175
|
1059 |
-
},
|
1060 |
-
{
|
1061 |
-
"epoch": 2.37,
|
1062 |
-
"learning_rate": 2e-05,
|
1063 |
-
"loss": 0.0612,
|
1064 |
-
"step": 176
|
1065 |
-
},
|
1066 |
-
{
|
1067 |
-
"epoch": 2.38,
|
1068 |
-
"learning_rate": 2e-05,
|
1069 |
-
"loss": 0.0575,
|
1070 |
-
"step": 177
|
1071 |
-
},
|
1072 |
-
{
|
1073 |
-
"epoch": 2.4,
|
1074 |
-
"learning_rate": 2e-05,
|
1075 |
-
"loss": 0.0651,
|
1076 |
-
"step": 178
|
1077 |
-
},
|
1078 |
-
{
|
1079 |
-
"epoch": 2.41,
|
1080 |
-
"learning_rate": 2e-05,
|
1081 |
-
"loss": 0.0679,
|
1082 |
-
"step": 179
|
1083 |
-
},
|
1084 |
-
{
|
1085 |
-
"epoch": 2.42,
|
1086 |
-
"learning_rate": 2e-05,
|
1087 |
-
"loss": 0.0648,
|
1088 |
-
"step": 180
|
1089 |
-
},
|
1090 |
-
{
|
1091 |
-
"epoch": 2.44,
|
1092 |
-
"learning_rate": 2e-05,
|
1093 |
-
"loss": 0.0685,
|
1094 |
-
"step": 181
|
1095 |
-
},
|
1096 |
-
{
|
1097 |
-
"epoch": 2.45,
|
1098 |
-
"learning_rate": 2e-05,
|
1099 |
-
"loss": 0.0646,
|
1100 |
-
"step": 182
|
1101 |
-
},
|
1102 |
-
{
|
1103 |
-
"epoch": 2.46,
|
1104 |
-
"learning_rate": 2e-05,
|
1105 |
-
"loss": 0.0688,
|
1106 |
-
"step": 183
|
1107 |
-
},
|
1108 |
-
{
|
1109 |
-
"epoch": 2.48,
|
1110 |
-
"learning_rate": 2e-05,
|
1111 |
-
"loss": 0.068,
|
1112 |
-
"step": 184
|
1113 |
-
},
|
1114 |
-
{
|
1115 |
-
"epoch": 2.49,
|
1116 |
-
"learning_rate": 2e-05,
|
1117 |
-
"loss": 0.067,
|
1118 |
-
"step": 185
|
1119 |
-
},
|
1120 |
-
{
|
1121 |
-
"epoch": 2.5,
|
1122 |
-
"learning_rate": 2e-05,
|
1123 |
-
"loss": 0.0683,
|
1124 |
-
"step": 186
|
1125 |
-
},
|
1126 |
-
{
|
1127 |
-
"epoch": 2.52,
|
1128 |
-
"learning_rate": 2e-05,
|
1129 |
-
"loss": 0.0668,
|
1130 |
-
"step": 187
|
1131 |
-
},
|
1132 |
-
{
|
1133 |
-
"epoch": 2.53,
|
1134 |
-
"learning_rate": 2e-05,
|
1135 |
-
"loss": 0.0663,
|
1136 |
-
"step": 188
|
1137 |
-
},
|
1138 |
-
{
|
1139 |
-
"epoch": 2.54,
|
1140 |
-
"learning_rate": 2e-05,
|
1141 |
-
"loss": 0.0636,
|
1142 |
-
"step": 189
|
1143 |
-
},
|
1144 |
-
{
|
1145 |
-
"epoch": 2.56,
|
1146 |
-
"learning_rate": 2e-05,
|
1147 |
-
"loss": 0.0667,
|
1148 |
-
"step": 190
|
1149 |
-
},
|
1150 |
-
{
|
1151 |
-
"epoch": 2.57,
|
1152 |
-
"learning_rate": 2e-05,
|
1153 |
-
"loss": 0.0688,
|
1154 |
-
"step": 191
|
1155 |
-
},
|
1156 |
-
{
|
1157 |
-
"epoch": 2.58,
|
1158 |
-
"learning_rate": 2e-05,
|
1159 |
-
"loss": 0.0708,
|
1160 |
-
"step": 192
|
1161 |
-
},
|
1162 |
-
{
|
1163 |
-
"epoch": 2.6,
|
1164 |
-
"learning_rate": 2e-05,
|
1165 |
-
"loss": 0.0666,
|
1166 |
-
"step": 193
|
1167 |
-
},
|
1168 |
-
{
|
1169 |
-
"epoch": 2.61,
|
1170 |
-
"learning_rate": 2e-05,
|
1171 |
-
"loss": 0.0679,
|
1172 |
-
"step": 194
|
1173 |
-
},
|
1174 |
-
{
|
1175 |
-
"epoch": 2.62,
|
1176 |
-
"learning_rate": 2e-05,
|
1177 |
-
"loss": 0.0675,
|
1178 |
-
"step": 195
|
1179 |
-
},
|
1180 |
-
{
|
1181 |
-
"epoch": 2.64,
|
1182 |
-
"learning_rate": 2e-05,
|
1183 |
-
"loss": 0.0688,
|
1184 |
-
"step": 196
|
1185 |
-
},
|
1186 |
-
{
|
1187 |
-
"epoch": 2.65,
|
1188 |
-
"learning_rate": 2e-05,
|
1189 |
-
"loss": 0.068,
|
1190 |
-
"step": 197
|
1191 |
-
},
|
1192 |
-
{
|
1193 |
-
"epoch": 2.66,
|
1194 |
-
"learning_rate": 2e-05,
|
1195 |
-
"loss": 0.0665,
|
1196 |
-
"step": 198
|
1197 |
-
},
|
1198 |
-
{
|
1199 |
-
"epoch": 2.68,
|
1200 |
-
"learning_rate": 2e-05,
|
1201 |
-
"loss": 0.0678,
|
1202 |
-
"step": 199
|
1203 |
-
},
|
1204 |
-
{
|
1205 |
-
"epoch": 2.69,
|
1206 |
-
"learning_rate": 2e-05,
|
1207 |
-
"loss": 0.0674,
|
1208 |
-
"step": 200
|
1209 |
-
},
|
1210 |
-
{
|
1211 |
-
"epoch": 2.7,
|
1212 |
-
"learning_rate": 2e-05,
|
1213 |
-
"loss": 0.0627,
|
1214 |
-
"step": 201
|
1215 |
-
},
|
1216 |
-
{
|
1217 |
-
"epoch": 2.72,
|
1218 |
-
"learning_rate": 2e-05,
|
1219 |
-
"loss": 0.0676,
|
1220 |
-
"step": 202
|
1221 |
-
},
|
1222 |
-
{
|
1223 |
-
"epoch": 2.73,
|
1224 |
-
"learning_rate": 2e-05,
|
1225 |
-
"loss": 0.0605,
|
1226 |
-
"step": 203
|
1227 |
-
},
|
1228 |
-
{
|
1229 |
-
"epoch": 2.75,
|
1230 |
-
"learning_rate": 2e-05,
|
1231 |
-
"loss": 0.0656,
|
1232 |
-
"step": 204
|
1233 |
-
},
|
1234 |
-
{
|
1235 |
-
"epoch": 2.76,
|
1236 |
-
"learning_rate": 2e-05,
|
1237 |
-
"loss": 0.072,
|
1238 |
-
"step": 205
|
1239 |
-
},
|
1240 |
-
{
|
1241 |
-
"epoch": 2.77,
|
1242 |
-
"learning_rate": 2e-05,
|
1243 |
-
"loss": 0.0635,
|
1244 |
-
"step": 206
|
1245 |
-
},
|
1246 |
-
{
|
1247 |
-
"epoch": 2.79,
|
1248 |
-
"learning_rate": 2e-05,
|
1249 |
-
"loss": 0.0624,
|
1250 |
-
"step": 207
|
1251 |
-
},
|
1252 |
-
{
|
1253 |
-
"epoch": 2.8,
|
1254 |
-
"learning_rate": 2e-05,
|
1255 |
-
"loss": 0.0628,
|
1256 |
-
"step": 208
|
1257 |
-
},
|
1258 |
-
{
|
1259 |
-
"epoch": 2.81,
|
1260 |
-
"learning_rate": 2e-05,
|
1261 |
-
"loss": 0.0704,
|
1262 |
-
"step": 209
|
1263 |
-
},
|
1264 |
-
{
|
1265 |
-
"epoch": 2.83,
|
1266 |
-
"learning_rate": 2e-05,
|
1267 |
-
"loss": 0.0647,
|
1268 |
-
"step": 210
|
1269 |
-
},
|
1270 |
-
{
|
1271 |
-
"epoch": 2.84,
|
1272 |
-
"learning_rate": 2e-05,
|
1273 |
-
"loss": 0.0611,
|
1274 |
-
"step": 211
|
1275 |
-
},
|
1276 |
-
{
|
1277 |
-
"epoch": 2.85,
|
1278 |
-
"learning_rate": 2e-05,
|
1279 |
-
"loss": 0.0686,
|
1280 |
-
"step": 212
|
1281 |
-
},
|
1282 |
-
{
|
1283 |
-
"epoch": 2.87,
|
1284 |
-
"learning_rate": 2e-05,
|
1285 |
-
"loss": 0.0686,
|
1286 |
-
"step": 213
|
1287 |
-
},
|
1288 |
-
{
|
1289 |
-
"epoch": 2.88,
|
1290 |
-
"learning_rate": 2e-05,
|
1291 |
-
"loss": 0.0723,
|
1292 |
-
"step": 214
|
1293 |
-
},
|
1294 |
-
{
|
1295 |
-
"epoch": 2.89,
|
1296 |
-
"learning_rate": 2e-05,
|
1297 |
-
"loss": 0.0644,
|
1298 |
-
"step": 215
|
1299 |
-
},
|
1300 |
-
{
|
1301 |
-
"epoch": 2.91,
|
1302 |
-
"learning_rate": 2e-05,
|
1303 |
-
"loss": 0.0702,
|
1304 |
-
"step": 216
|
1305 |
-
},
|
1306 |
-
{
|
1307 |
-
"epoch": 2.92,
|
1308 |
-
"learning_rate": 2e-05,
|
1309 |
-
"loss": 0.0624,
|
1310 |
-
"step": 217
|
1311 |
-
},
|
1312 |
-
{
|
1313 |
-
"epoch": 2.93,
|
1314 |
-
"learning_rate": 2e-05,
|
1315 |
-
"loss": 0.0664,
|
1316 |
-
"step": 218
|
1317 |
-
},
|
1318 |
-
{
|
1319 |
-
"epoch": 2.95,
|
1320 |
-
"learning_rate": 2e-05,
|
1321 |
-
"loss": 0.0592,
|
1322 |
-
"step": 219
|
1323 |
-
},
|
1324 |
-
{
|
1325 |
-
"epoch": 2.96,
|
1326 |
-
"learning_rate": 2e-05,
|
1327 |
-
"loss": 0.0565,
|
1328 |
-
"step": 220
|
1329 |
-
},
|
1330 |
-
{
|
1331 |
-
"epoch": 2.97,
|
1332 |
-
"learning_rate": 2e-05,
|
1333 |
-
"loss": 0.0679,
|
1334 |
-
"step": 221
|
1335 |
-
},
|
1336 |
-
{
|
1337 |
-
"epoch": 2.99,
|
1338 |
-
"learning_rate": 2e-05,
|
1339 |
-
"loss": 0.0617,
|
1340 |
-
"step": 222
|
1341 |
-
}
|
1342 |
-
],
|
1343 |
-
"max_steps": 222,
|
1344 |
-
"num_train_epochs": 3,
|
1345 |
-
"total_flos": 31856813015040.0,
|
1346 |
-
"trial_name": null,
|
1347 |
-
"trial_params": null
|
1348 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstructScore_English/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e04a090494b1b9ef7c1035d6a1a84d50dd4eedd9b6ceab3e135a3f316ba05776
|
3 |
-
size 4923
|
|
|
|
|
|
|
|
InstructScore_English/zero_to_fp32.py
DELETED
@@ -1,483 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
'''Copyright The Microsoft DeepSpeed Team'''
|
3 |
-
|
4 |
-
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
5 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
6 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
7 |
-
# application.
|
8 |
-
#
|
9 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
10 |
-
|
11 |
-
import argparse
|
12 |
-
import torch
|
13 |
-
import glob
|
14 |
-
import math
|
15 |
-
import os
|
16 |
-
import re
|
17 |
-
from collections import OrderedDict
|
18 |
-
|
19 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
20 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
21 |
-
from deepspeed.utils import logger
|
22 |
-
from deepspeed.checkpoint.constants import (DS_VERSION,
|
23 |
-
OPTIMIZER_STATE_DICT,
|
24 |
-
SINGLE_PARTITION_OF_FP32_GROUPS,
|
25 |
-
FP32_FLAT_GROUPS,
|
26 |
-
ZERO_STAGE,
|
27 |
-
PARTITION_COUNT,
|
28 |
-
PARAM_SHAPES,
|
29 |
-
BUFFER_NAMES)
|
30 |
-
|
31 |
-
debug = 0
|
32 |
-
|
33 |
-
# load to cpu
|
34 |
-
device = torch.device('cpu')
|
35 |
-
|
36 |
-
|
37 |
-
def atoi(text):
|
38 |
-
return int(text) if text.isdigit() else text
|
39 |
-
|
40 |
-
|
41 |
-
def natural_keys(text):
|
42 |
-
'''
|
43 |
-
alist.sort(key=natural_keys) sorts in human order
|
44 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
45 |
-
(See Toothy's implementation in the comments)
|
46 |
-
'''
|
47 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
48 |
-
|
49 |
-
|
50 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
51 |
-
if not os.path.isdir(checkpoint_dir):
|
52 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
53 |
-
|
54 |
-
# there should be only one file
|
55 |
-
if zero_stage == 2:
|
56 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
57 |
-
elif zero_stage == 3:
|
58 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
59 |
-
|
60 |
-
if not os.path.exists(file):
|
61 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
62 |
-
|
63 |
-
return file
|
64 |
-
|
65 |
-
|
66 |
-
def get_optim_files(checkpoint_dir):
|
67 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
68 |
-
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
69 |
-
"*_optim_states.pt")),
|
70 |
-
key=natural_keys)
|
71 |
-
|
72 |
-
if len(optim_files) == 0:
|
73 |
-
raise FileNotFoundError(
|
74 |
-
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
75 |
-
|
76 |
-
return optim_files
|
77 |
-
|
78 |
-
|
79 |
-
def parse_model_state(file):
|
80 |
-
state_dict = torch.load(file, map_location=device)
|
81 |
-
|
82 |
-
if BUFFER_NAMES not in state_dict:
|
83 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
84 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
85 |
-
if debug:
|
86 |
-
print("Found buffers:", buffer_names)
|
87 |
-
|
88 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
89 |
-
buffers = {
|
90 |
-
k: v.float()
|
91 |
-
for k,
|
92 |
-
v in state_dict["module"].items() if k in buffer_names
|
93 |
-
}
|
94 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
95 |
-
|
96 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
97 |
-
|
98 |
-
return buffers, param_shapes, ds_version
|
99 |
-
|
100 |
-
|
101 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
102 |
-
|
103 |
-
total_files = len(files)
|
104 |
-
state_dicts = []
|
105 |
-
for f in files:
|
106 |
-
state_dicts.append(torch.load(f, map_location=device))
|
107 |
-
|
108 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
109 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
110 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
111 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
112 |
-
|
113 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
114 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
115 |
-
# use the max of the partition_count to get the dp world_size.
|
116 |
-
|
117 |
-
if type(world_size) is list:
|
118 |
-
world_size = max(world_size)
|
119 |
-
|
120 |
-
if world_size != total_files:
|
121 |
-
raise ValueError(
|
122 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
123 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
124 |
-
)
|
125 |
-
|
126 |
-
# the groups are named differently in each stage
|
127 |
-
if zero_stage == 2:
|
128 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
129 |
-
elif zero_stage == 3:
|
130 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
131 |
-
else:
|
132 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
133 |
-
|
134 |
-
if zero_stage == 2:
|
135 |
-
fp32_flat_groups = [
|
136 |
-
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
137 |
-
for i in range(len(state_dicts))
|
138 |
-
]
|
139 |
-
elif zero_stage == 3:
|
140 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
141 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
142 |
-
#
|
143 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
144 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
145 |
-
|
146 |
-
fp32_flat_groups = [
|
147 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
148 |
-
0) for i in range(len(state_dicts))
|
149 |
-
]
|
150 |
-
|
151 |
-
return zero_stage, world_size, fp32_flat_groups
|
152 |
-
|
153 |
-
|
154 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
155 |
-
"""
|
156 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
157 |
-
|
158 |
-
Args:
|
159 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
160 |
-
|
161 |
-
"""
|
162 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
163 |
-
|
164 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
165 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
166 |
-
print(
|
167 |
-
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
168 |
-
|
169 |
-
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
170 |
-
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
171 |
-
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
172 |
-
|
173 |
-
if zero_stage == 2:
|
174 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
175 |
-
param_shapes,
|
176 |
-
fp32_flat_groups,
|
177 |
-
buffers)
|
178 |
-
elif zero_stage == 3:
|
179 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
180 |
-
param_shapes,
|
181 |
-
fp32_flat_groups,
|
182 |
-
buffers)
|
183 |
-
|
184 |
-
|
185 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
186 |
-
param_shapes,
|
187 |
-
fp32_flat_groups,
|
188 |
-
buffers):
|
189 |
-
|
190 |
-
# Reconstruction protocol:
|
191 |
-
#
|
192 |
-
# XXX: document this
|
193 |
-
|
194 |
-
if debug:
|
195 |
-
for i in range(world_size):
|
196 |
-
for j in range(len(fp32_flat_groups[0])):
|
197 |
-
print(
|
198 |
-
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
199 |
-
|
200 |
-
# XXX: memory usage doubles here (zero2)
|
201 |
-
num_param_groups = len(fp32_flat_groups[0])
|
202 |
-
merged_single_partition_of_fp32_groups = []
|
203 |
-
for i in range(num_param_groups):
|
204 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
205 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
206 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
207 |
-
avail_numel = sum([
|
208 |
-
full_single_fp32_vector.numel()
|
209 |
-
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
210 |
-
])
|
211 |
-
|
212 |
-
if debug:
|
213 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
214 |
-
wanted_numel = sum(
|
215 |
-
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
216 |
-
# not asserting if there is a mismatch due to possible padding
|
217 |
-
print(f"Have {avail_numel} numels to process.")
|
218 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
219 |
-
|
220 |
-
state_dict = OrderedDict()
|
221 |
-
|
222 |
-
# buffers
|
223 |
-
state_dict.update(buffers)
|
224 |
-
if debug:
|
225 |
-
print(f"added {len(buffers)} buffers")
|
226 |
-
|
227 |
-
# params
|
228 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
229 |
-
# out-of-core computing solution
|
230 |
-
total_numel = 0
|
231 |
-
total_params = 0
|
232 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
233 |
-
offset = 0
|
234 |
-
avail_numel = full_single_fp32_vector.numel()
|
235 |
-
for name, shape in shapes.items():
|
236 |
-
|
237 |
-
unpartitioned_numel = shape.numel()
|
238 |
-
total_numel += unpartitioned_numel
|
239 |
-
total_params += 1
|
240 |
-
|
241 |
-
if debug:
|
242 |
-
print(
|
243 |
-
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
244 |
-
)
|
245 |
-
state_dict[name] = full_single_fp32_vector.narrow(
|
246 |
-
0,
|
247 |
-
offset,
|
248 |
-
unpartitioned_numel).view(shape)
|
249 |
-
offset += unpartitioned_numel
|
250 |
-
|
251 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
252 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
253 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
254 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
255 |
-
align_to = 2 * world_size
|
256 |
-
|
257 |
-
def zero2_align(x):
|
258 |
-
return align_to * math.ceil(x / align_to)
|
259 |
-
|
260 |
-
if debug:
|
261 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
262 |
-
|
263 |
-
offset = zero2_align(offset)
|
264 |
-
avail_numel = zero2_align(avail_numel)
|
265 |
-
|
266 |
-
if debug:
|
267 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
268 |
-
|
269 |
-
# Sanity check
|
270 |
-
if offset != avail_numel:
|
271 |
-
raise ValueError(
|
272 |
-
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
273 |
-
|
274 |
-
print(
|
275 |
-
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
276 |
-
)
|
277 |
-
|
278 |
-
return state_dict
|
279 |
-
|
280 |
-
|
281 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
282 |
-
remainder = unpartitioned_numel % world_size
|
283 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
284 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
285 |
-
return partitioned_numel, padding_numel
|
286 |
-
|
287 |
-
|
288 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
289 |
-
param_shapes,
|
290 |
-
fp32_flat_groups,
|
291 |
-
buffers):
|
292 |
-
|
293 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
294 |
-
# param, re-consolidating each param, while dealing with padding if any
|
295 |
-
|
296 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
297 |
-
# merge list of dicts, preserving order
|
298 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
299 |
-
|
300 |
-
if debug:
|
301 |
-
for i in range(world_size):
|
302 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
303 |
-
|
304 |
-
wanted_params = len(param_shapes)
|
305 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
306 |
-
# not asserting if there is a mismatch due to possible padding
|
307 |
-
print(f"Have {avail_numel} numels to process.")
|
308 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
309 |
-
|
310 |
-
state_dict = OrderedDict()
|
311 |
-
|
312 |
-
# buffers
|
313 |
-
state_dict.update(buffers)
|
314 |
-
if debug:
|
315 |
-
print(f"added {len(buffers)} buffers")
|
316 |
-
|
317 |
-
# params
|
318 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
319 |
-
# out-of-core computing solution
|
320 |
-
offset = 0
|
321 |
-
total_numel = 0
|
322 |
-
total_params = 0
|
323 |
-
for name, shape in param_shapes.items():
|
324 |
-
|
325 |
-
unpartitioned_numel = shape.numel()
|
326 |
-
total_numel += unpartitioned_numel
|
327 |
-
total_params += 1
|
328 |
-
|
329 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
330 |
-
|
331 |
-
if debug:
|
332 |
-
print(
|
333 |
-
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
334 |
-
)
|
335 |
-
|
336 |
-
# XXX: memory usage doubles here
|
337 |
-
state_dict[name] = torch.cat(
|
338 |
-
tuple(fp32_flat_groups[i].narrow(0,
|
339 |
-
offset,
|
340 |
-
partitioned_numel)
|
341 |
-
for i in range(world_size)),
|
342 |
-
0).narrow(0,
|
343 |
-
0,
|
344 |
-
unpartitioned_numel).view(shape)
|
345 |
-
offset += partitioned_numel
|
346 |
-
|
347 |
-
offset *= world_size
|
348 |
-
|
349 |
-
# Sanity check
|
350 |
-
if offset != avail_numel:
|
351 |
-
raise ValueError(
|
352 |
-
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
353 |
-
|
354 |
-
print(
|
355 |
-
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
356 |
-
)
|
357 |
-
|
358 |
-
return state_dict
|
359 |
-
|
360 |
-
|
361 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
362 |
-
"""
|
363 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
364 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
365 |
-
via a model hub.
|
366 |
-
|
367 |
-
Args:
|
368 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
369 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
370 |
-
|
371 |
-
Returns:
|
372 |
-
- pytorch ``state_dict``
|
373 |
-
|
374 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
375 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
376 |
-
the checkpoint.
|
377 |
-
|
378 |
-
A typical usage might be ::
|
379 |
-
|
380 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
381 |
-
# do the training and checkpoint saving
|
382 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
383 |
-
model = model.cpu() # move to cpu
|
384 |
-
model.load_state_dict(state_dict)
|
385 |
-
# submit to model hub or save the model to share with others
|
386 |
-
|
387 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
388 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
389 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
390 |
-
|
391 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
392 |
-
|
393 |
-
"""
|
394 |
-
if tag is None:
|
395 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
396 |
-
if os.path.isfile(latest_path):
|
397 |
-
with open(latest_path, 'r') as fd:
|
398 |
-
tag = fd.read().strip()
|
399 |
-
else:
|
400 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
401 |
-
|
402 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
403 |
-
|
404 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
405 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
406 |
-
|
407 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
408 |
-
|
409 |
-
|
410 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
411 |
-
"""
|
412 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
413 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
414 |
-
|
415 |
-
Args:
|
416 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
417 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
418 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
419 |
-
"""
|
420 |
-
|
421 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
422 |
-
print(f"Saving fp32 state dict to {output_file}")
|
423 |
-
torch.save(state_dict, output_file)
|
424 |
-
|
425 |
-
|
426 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
427 |
-
"""
|
428 |
-
1. Put the provided model to cpu
|
429 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
430 |
-
3. Load it into the provided model
|
431 |
-
|
432 |
-
Args:
|
433 |
-
- ``model``: the model object to update
|
434 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
435 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
436 |
-
|
437 |
-
Returns:
|
438 |
-
- ``model`: modified model
|
439 |
-
|
440 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
441 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
442 |
-
conveniently placed for you in the checkpoint folder.
|
443 |
-
|
444 |
-
A typical usage might be ::
|
445 |
-
|
446 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
447 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
448 |
-
# submit to model hub or save the model to share with others
|
449 |
-
|
450 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
451 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
452 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
453 |
-
|
454 |
-
"""
|
455 |
-
logger.info(f"Extracting fp32 weights")
|
456 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
457 |
-
|
458 |
-
logger.info(f"Overwriting model with fp32 weights")
|
459 |
-
model = model.cpu()
|
460 |
-
model.load_state_dict(state_dict, strict=False)
|
461 |
-
|
462 |
-
return model
|
463 |
-
|
464 |
-
|
465 |
-
if __name__ == "__main__":
|
466 |
-
|
467 |
-
parser = argparse.ArgumentParser()
|
468 |
-
parser.add_argument(
|
469 |
-
"checkpoint_dir",
|
470 |
-
type=str,
|
471 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
472 |
-
parser.add_argument(
|
473 |
-
"output_file",
|
474 |
-
type=str,
|
475 |
-
help=
|
476 |
-
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
477 |
-
)
|
478 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
479 |
-
args = parser.parse_args()
|
480 |
-
|
481 |
-
debug = args.debug
|
482 |
-
|
483 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InstructScore_Tok/special_tokens_map.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{}
|
|
|
|
InstructScore_Tok/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
-
size 499723
|
|
|
|
|
|
|
|
InstructScore_Tok/tokenizer_config.json
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "",
|
3 |
-
"clean_up_tokenization_spaces": false,
|
4 |
-
"eos_token": "",
|
5 |
-
"model_max_length": 1000000000000000019884624838656,
|
6 |
-
"special_tokens_map_file": "/mnt/data3/wendaxu/.cache/huggingface/hub/models--decapoda-research--llama-7b-hf/snapshots/5f98eefcc80e437ef68d457ad7bf167c2c6a1348/special_tokens_map.json",
|
7 |
-
"tokenizer_class": "LlamaTokenizer",
|
8 |
-
"unk_token": ""
|
9 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -8,11 +8,13 @@ An amazing explanation metric (diagnostic report) for text generation evaluation
|
|
8 |
|
9 |
First step, you may download all required dependencies through: pip3 install -r requirements.txt
|
10 |
|
11 |
-
# Metric Card for InstructScore
|
12 |
-
![alt text](https://huggingface.co/xu1998hz/InstructScore/blob/main/figs/InstructScore_teaser.jpg)
|
13 |
|
14 |
To run our metric, you only need five lines
|
15 |
|
|
|
|
|
16 |
````
|
17 |
```
|
18 |
from InstructScore import *
|
@@ -23,6 +25,6 @@ batch_outputs, scores_ls = scorer.score(refs, outs)
|
|
23 |
```
|
24 |
````
|
25 |
|
26 |
-
![Overview](https://huggingface.co/xu1998hz/InstructScore/blob/main/figs/InstructScore.jpg)
|
27 |
-
|
28 |
|
|
|
|
8 |
|
9 |
First step, you may download all required dependencies through: pip3 install -r requirements.txt
|
10 |
|
11 |
+
<!-- # Metric Card for InstructScore
|
12 |
+
![alt text](https://huggingface.co/xu1998hz/InstructScore/blob/main/figs/InstructScore_teaser.jpg) -->
|
13 |
|
14 |
To run our metric, you only need five lines
|
15 |
|
16 |
+
Please visit our github: https://github.com/xu1998hz/SEScore3/
|
17 |
+
|
18 |
````
|
19 |
```
|
20 |
from InstructScore import *
|
|
|
25 |
```
|
26 |
````
|
27 |
|
28 |
+
<!-- ![Overview](https://huggingface.co/xu1998hz/InstructScore/blob/main/figs/InstructScore.jpg)
|
|
|
29 |
|
30 |
+
-->
|