xshubhamx commited on
Commit
d3d7141
·
verified ·
1 Parent(s): c1f0556

Upload folder using huggingface_hub

Browse files
training_checkpoints/checkpoint-2089/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
training_checkpoints/checkpoint-2089/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "SEQ_CLS",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
training_checkpoints/checkpoint-2089/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:798ecb3117168a5b6ae59c6c5c524bceffc01e4b929bfdb62bed0e1b5e9a717e
3
+ size 50626520
training_checkpoints/checkpoint-2089/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31121b590bd102f76146f319e9d7aa65f136e0af373160e62172fb81da395265
3
+ size 101430714
training_checkpoints/checkpoint-2089/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a084d9a788ab7469931980176d3d6704526fa815c22f44b7f47f2cf5b6825db
3
+ size 14244
training_checkpoints/checkpoint-2089/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17d312c85e7710a02853d89e1740c738c65d9cbdf79808c54c9a567b89b1df7d
3
+ size 1064
training_checkpoints/checkpoint-2089/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
training_checkpoints/checkpoint-2089/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-2089/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
training_checkpoints/checkpoint-2089/tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
30
+ "clean_up_tokenization_spaces": false,
31
+ "eos_token": "</s>",
32
+ "legacy": false,
33
+ "model_max_length": 2048,
34
+ "pad_token": "</s>",
35
+ "padding_side": "right",
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "LlamaTokenizer",
38
+ "unk_token": "<unk>",
39
+ "use_default_system_prompt": false
40
+ }
training_checkpoints/checkpoint-2089/trainer_state.json ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7425477382056641,
3
+ "best_model_checkpoint": "tiny-llama-lora-new/checkpoint-2089",
4
+ "epoch": 12.995334370139968,
5
+ "eval_steps": 500,
6
+ "global_step": 2089,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.8001549186676995,
14
+ "eval_f1_macro": 0.6790360166213908,
15
+ "eval_f1_micro": 0.8001549186676995,
16
+ "eval_f1_weighted": 0.7959404181222782,
17
+ "eval_loss": 0.6614832282066345,
18
+ "eval_macro_fpr": 0.01824293967244035,
19
+ "eval_macro_sensitivity": 0.6677834011062839,
20
+ "eval_macro_specificity": 0.9848478627893485,
21
+ "eval_precision": 0.8040294558027004,
22
+ "eval_precision_macro": 0.7265846774862527,
23
+ "eval_recall": 0.8001549186676995,
24
+ "eval_recall_macro": 0.6677834011062839,
25
+ "eval_runtime": 225.9328,
26
+ "eval_samples_per_second": 5.714,
27
+ "eval_steps_per_second": 0.717,
28
+ "eval_weighted_fpr": 0.017527173913043478,
29
+ "eval_weighted_sensitivity": 0.8001549186676995,
30
+ "eval_weighted_specificity": 0.97256302317253,
31
+ "step": 160
32
+ },
33
+ {
34
+ "epoch": 2.0,
35
+ "eval_accuracy": 0.8063516653756778,
36
+ "eval_f1_macro": 0.723523893027765,
37
+ "eval_f1_micro": 0.8063516653756778,
38
+ "eval_f1_weighted": 0.8039099652383133,
39
+ "eval_loss": 0.6995529532432556,
40
+ "eval_macro_fpr": 0.01771710819775641,
41
+ "eval_macro_sensitivity": 0.7207263437235008,
42
+ "eval_macro_specificity": 0.9853387258716434,
43
+ "eval_precision": 0.8110438944279544,
44
+ "eval_precision_macro": 0.7448100337436813,
45
+ "eval_recall": 0.8063516653756778,
46
+ "eval_recall_macro": 0.7207263437235008,
47
+ "eval_runtime": 230.7469,
48
+ "eval_samples_per_second": 5.595,
49
+ "eval_steps_per_second": 0.702,
50
+ "eval_weighted_fpr": 0.01686454398273071,
51
+ "eval_weighted_sensitivity": 0.8063516653756778,
52
+ "eval_weighted_specificity": 0.9737292226989717,
53
+ "step": 321
54
+ },
55
+ {
56
+ "epoch": 3.0,
57
+ "eval_accuracy": 0.8125484120836561,
58
+ "eval_f1_macro": 0.7179663090811256,
59
+ "eval_f1_micro": 0.8125484120836561,
60
+ "eval_f1_weighted": 0.8085118934271095,
61
+ "eval_loss": 0.8202366828918457,
62
+ "eval_macro_fpr": 0.017097652587672894,
63
+ "eval_macro_sensitivity": 0.7080107913825292,
64
+ "eval_macro_specificity": 0.985578595986596,
65
+ "eval_precision": 0.8118501609528374,
66
+ "eval_precision_macro": 0.7576540712122397,
67
+ "eval_recall": 0.8125484120836561,
68
+ "eval_recall_macro": 0.7080107913825292,
69
+ "eval_runtime": 231.655,
70
+ "eval_samples_per_second": 5.573,
71
+ "eval_steps_per_second": 0.699,
72
+ "eval_weighted_fpr": 0.016211146838156484,
73
+ "eval_weighted_sensitivity": 0.8125484120836561,
74
+ "eval_weighted_specificity": 0.9711305277152844,
75
+ "step": 482
76
+ },
77
+ {
78
+ "epoch": 3.11,
79
+ "learning_rate": 3.958333333333333e-05,
80
+ "loss": 0.2932,
81
+ "step": 500
82
+ },
83
+ {
84
+ "epoch": 4.0,
85
+ "eval_accuracy": 0.8140975987606507,
86
+ "eval_f1_macro": 0.7415140921427528,
87
+ "eval_f1_micro": 0.8140975987606507,
88
+ "eval_f1_weighted": 0.8153735617531811,
89
+ "eval_loss": 0.9493006467819214,
90
+ "eval_macro_fpr": 0.016573672675540378,
91
+ "eval_macro_sensitivity": 0.7326751453453961,
92
+ "eval_macro_specificity": 0.9859001747376132,
93
+ "eval_precision": 0.8204052204072106,
94
+ "eval_precision_macro": 0.759251934556511,
95
+ "eval_recall": 0.8140975987606507,
96
+ "eval_recall_macro": 0.7326751453453961,
97
+ "eval_runtime": 230.2371,
98
+ "eval_samples_per_second": 5.607,
99
+ "eval_steps_per_second": 0.704,
100
+ "eval_weighted_fpr": 0.016049217600641968,
101
+ "eval_weighted_sensitivity": 0.8140975987606507,
102
+ "eval_weighted_specificity": 0.974405022303545,
103
+ "step": 643
104
+ },
105
+ {
106
+ "epoch": 5.0,
107
+ "eval_accuracy": 0.8109992254066615,
108
+ "eval_f1_macro": 0.7413292975124365,
109
+ "eval_f1_micro": 0.8109992254066615,
110
+ "eval_f1_weighted": 0.8086569922767037,
111
+ "eval_loss": 1.0610005855560303,
112
+ "eval_macro_fpr": 0.017150663222076427,
113
+ "eval_macro_sensitivity": 0.7427303328596474,
114
+ "eval_macro_specificity": 0.9856545654845559,
115
+ "eval_precision": 0.8110273755487133,
116
+ "eval_precision_macro": 0.7595846993577862,
117
+ "eval_recall": 0.8109992254066615,
118
+ "eval_recall_macro": 0.7427303328596474,
119
+ "eval_runtime": 232.3513,
120
+ "eval_samples_per_second": 5.556,
121
+ "eval_steps_per_second": 0.697,
122
+ "eval_weighted_fpr": 0.016373641121997046,
123
+ "eval_weighted_sensitivity": 0.8109992254066615,
124
+ "eval_weighted_specificity": 0.9738192568616761,
125
+ "step": 803
126
+ },
127
+ {
128
+ "epoch": 6.0,
129
+ "eval_accuracy": 0.814872192099148,
130
+ "eval_f1_macro": 0.740834009056896,
131
+ "eval_f1_micro": 0.814872192099148,
132
+ "eval_f1_weighted": 0.812828873292886,
133
+ "eval_loss": 1.1361573934555054,
134
+ "eval_macro_fpr": 0.016745822161733162,
135
+ "eval_macro_sensitivity": 0.7380044964762863,
136
+ "eval_macro_specificity": 0.9859281636821422,
137
+ "eval_precision": 0.8159522433901665,
138
+ "eval_precision_macro": 0.7731408058998965,
139
+ "eval_recall": 0.814872192099148,
140
+ "eval_recall_macro": 0.7380044964762863,
141
+ "eval_runtime": 230.3919,
142
+ "eval_samples_per_second": 5.603,
143
+ "eval_steps_per_second": 0.703,
144
+ "eval_weighted_fpr": 0.015968463954032203,
145
+ "eval_weighted_sensitivity": 0.814872192099148,
146
+ "eval_weighted_specificity": 0.9740502631329879,
147
+ "step": 964
148
+ },
149
+ {
150
+ "epoch": 6.22,
151
+ "learning_rate": 2.916666666666667e-05,
152
+ "loss": 0.0107,
153
+ "step": 1000
154
+ },
155
+ {
156
+ "epoch": 7.0,
157
+ "eval_accuracy": 0.8102246320681642,
158
+ "eval_f1_macro": 0.734324336127792,
159
+ "eval_f1_micro": 0.8102246320681642,
160
+ "eval_f1_weighted": 0.8084846815925374,
161
+ "eval_loss": 1.1712960004806519,
162
+ "eval_macro_fpr": 0.017129374121876983,
163
+ "eval_macro_sensitivity": 0.730990149259248,
164
+ "eval_macro_specificity": 0.9855872802214631,
165
+ "eval_precision": 0.812320444346659,
166
+ "eval_precision_macro": 0.7734170589513789,
167
+ "eval_recall": 0.8102246320681642,
168
+ "eval_recall_macro": 0.730990149259248,
169
+ "eval_runtime": 232.06,
170
+ "eval_samples_per_second": 5.563,
171
+ "eval_steps_per_second": 0.698,
172
+ "eval_weighted_fpr": 0.016455101081335213,
173
+ "eval_weighted_sensitivity": 0.8102246320681642,
174
+ "eval_weighted_specificity": 0.973584571253782,
175
+ "step": 1125
176
+ },
177
+ {
178
+ "epoch": 8.0,
179
+ "eval_accuracy": 0.8156467854376452,
180
+ "eval_f1_macro": 0.7374069155892726,
181
+ "eval_f1_micro": 0.8156467854376452,
182
+ "eval_f1_weighted": 0.8127779657126307,
183
+ "eval_loss": 1.1785770654678345,
184
+ "eval_macro_fpr": 0.016642226736202675,
185
+ "eval_macro_sensitivity": 0.7348966803697986,
186
+ "eval_macro_specificity": 0.9859780376275717,
187
+ "eval_precision": 0.8140580469506681,
188
+ "eval_precision_macro": 0.7655811603242806,
189
+ "eval_recall": 0.8156467854376452,
190
+ "eval_recall_macro": 0.7348966803697986,
191
+ "eval_runtime": 230.6812,
192
+ "eval_samples_per_second": 5.596,
193
+ "eval_steps_per_second": 0.702,
194
+ "eval_weighted_fpr": 0.01588785046728972,
195
+ "eval_weighted_sensitivity": 0.8156467854376452,
196
+ "eval_weighted_specificity": 0.9740237789759322,
197
+ "step": 1286
198
+ },
199
+ {
200
+ "epoch": 9.0,
201
+ "eval_accuracy": 0.8187451587916343,
202
+ "eval_f1_macro": 0.7400115374685853,
203
+ "eval_f1_micro": 0.8187451587916342,
204
+ "eval_f1_weighted": 0.8156936902580679,
205
+ "eval_loss": 1.1960150003433228,
206
+ "eval_macro_fpr": 0.01632755569207043,
207
+ "eval_macro_sensitivity": 0.7367529624892385,
208
+ "eval_macro_specificity": 0.9862031650054388,
209
+ "eval_precision": 0.8170206925865887,
210
+ "eval_precision_macro": 0.769266125041975,
211
+ "eval_recall": 0.8187451587916343,
212
+ "eval_recall_macro": 0.7367529624892385,
213
+ "eval_runtime": 231.8038,
214
+ "eval_samples_per_second": 5.569,
215
+ "eval_steps_per_second": 0.699,
216
+ "eval_weighted_fpr": 0.015566790846194785,
217
+ "eval_weighted_sensitivity": 0.8187451587916343,
218
+ "eval_weighted_specificity": 0.9743023162899509,
219
+ "step": 1446
220
+ },
221
+ {
222
+ "epoch": 9.33,
223
+ "learning_rate": 1.8750000000000002e-05,
224
+ "loss": 0.0016,
225
+ "step": 1500
226
+ },
227
+ {
228
+ "epoch": 10.0,
229
+ "eval_accuracy": 0.8156467854376452,
230
+ "eval_f1_macro": 0.7376161090278297,
231
+ "eval_f1_micro": 0.8156467854376452,
232
+ "eval_f1_weighted": 0.8130986313804958,
233
+ "eval_loss": 1.204884648323059,
234
+ "eval_macro_fpr": 0.016621895484736447,
235
+ "eval_macro_sensitivity": 0.7352544079731995,
236
+ "eval_macro_specificity": 0.9859824832056153,
237
+ "eval_precision": 0.8149926729426089,
238
+ "eval_precision_macro": 0.765906061186384,
239
+ "eval_recall": 0.8156467854376452,
240
+ "eval_recall_macro": 0.7352544079731995,
241
+ "eval_runtime": 230.9138,
242
+ "eval_samples_per_second": 5.591,
243
+ "eval_steps_per_second": 0.702,
244
+ "eval_weighted_fpr": 0.01588785046728972,
245
+ "eval_weighted_sensitivity": 0.8156467854376452,
246
+ "eval_weighted_specificity": 0.9740904626465837,
247
+ "step": 1607
248
+ },
249
+ {
250
+ "epoch": 11.0,
251
+ "eval_accuracy": 0.8156467854376452,
252
+ "eval_f1_macro": 0.7376791177200052,
253
+ "eval_f1_micro": 0.8156467854376452,
254
+ "eval_f1_weighted": 0.8129515156545265,
255
+ "eval_loss": 1.2137137651443481,
256
+ "eval_macro_fpr": 0.016631267825388357,
257
+ "eval_macro_sensitivity": 0.7352648717267571,
258
+ "eval_macro_specificity": 0.9859807497677747,
259
+ "eval_precision": 0.81468290664357,
260
+ "eval_precision_macro": 0.766075737607577,
261
+ "eval_recall": 0.8156467854376452,
262
+ "eval_recall_macro": 0.7352648717267571,
263
+ "eval_runtime": 234.0704,
264
+ "eval_samples_per_second": 5.515,
265
+ "eval_steps_per_second": 0.692,
266
+ "eval_weighted_fpr": 0.01588785046728972,
267
+ "eval_weighted_sensitivity": 0.8156467854376452,
268
+ "eval_weighted_specificity": 0.9740644610789766,
269
+ "step": 1768
270
+ },
271
+ {
272
+ "epoch": 12.0,
273
+ "eval_accuracy": 0.8156467854376452,
274
+ "eval_f1_macro": 0.7378911666248646,
275
+ "eval_f1_micro": 0.8156467854376452,
276
+ "eval_f1_weighted": 0.8128626681643639,
277
+ "eval_loss": 1.2158095836639404,
278
+ "eval_macro_fpr": 0.01664811744097862,
279
+ "eval_macro_sensitivity": 0.7352648717267571,
280
+ "eval_macro_specificity": 0.9859669931344103,
281
+ "eval_precision": 0.8144771699978494,
282
+ "eval_precision_macro": 0.7664387794391382,
283
+ "eval_recall": 0.8156467854376452,
284
+ "eval_recall_macro": 0.7352648717267571,
285
+ "eval_runtime": 231.833,
286
+ "eval_samples_per_second": 5.569,
287
+ "eval_steps_per_second": 0.699,
288
+ "eval_weighted_fpr": 0.01588785046728972,
289
+ "eval_weighted_sensitivity": 0.8156467854376452,
290
+ "eval_weighted_specificity": 0.9738581115785108,
291
+ "step": 1929
292
+ },
293
+ {
294
+ "epoch": 12.44,
295
+ "learning_rate": 8.333333333333334e-06,
296
+ "loss": 0.0011,
297
+ "step": 2000
298
+ },
299
+ {
300
+ "epoch": 13.0,
301
+ "eval_accuracy": 0.8187451587916343,
302
+ "eval_f1_macro": 0.7425477382056641,
303
+ "eval_f1_micro": 0.8187451587916342,
304
+ "eval_f1_weighted": 0.8157578026261842,
305
+ "eval_loss": 1.2201900482177734,
306
+ "eval_macro_fpr": 0.01633145053296977,
307
+ "eval_macro_sensitivity": 0.7372241049428965,
308
+ "eval_macro_specificity": 0.9861894646777546,
309
+ "eval_precision": 0.8168736065801445,
310
+ "eval_precision_macro": 0.7720479168106198,
311
+ "eval_recall": 0.8187451587916343,
312
+ "eval_recall_macro": 0.7372241049428965,
313
+ "eval_runtime": 230.3364,
314
+ "eval_samples_per_second": 5.605,
315
+ "eval_steps_per_second": 0.703,
316
+ "eval_weighted_fpr": 0.015566790846194785,
317
+ "eval_weighted_sensitivity": 0.8187451587916343,
318
+ "eval_weighted_specificity": 0.974096811374682,
319
+ "step": 2089
320
+ }
321
+ ],
322
+ "logging_steps": 500,
323
+ "max_steps": 2400,
324
+ "num_train_epochs": 15,
325
+ "save_steps": 500,
326
+ "total_flos": 2.0142662905705267e+17,
327
+ "trial_name": null,
328
+ "trial_params": null
329
+ }
training_checkpoints/checkpoint-2089/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e84303a58cbcecc7c81f1fc15ed332a0b248db008b5bd9ad0021bb2b3e07414f
3
+ size 4600