|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math, os
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint as checkpoint
|
|
import torch.nn.functional as F
|
|
from IPG.arch_util import to_2tuple, trunc_normal_
|
|
import numpy as np
|
|
import einops
|
|
|
|
from IPG.ipg_kit import flex, cossim, local_sampling, global_sampling
|
|
|
|
list_to_save = list()
|
|
|
|
|
|
class ChannelAttention(nn.Module):
|
|
"""Channel attention used in RCAN.
|
|
Args:
|
|
num_feat (int): Channel number of intermediate features.
|
|
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
|
"""
|
|
|
|
def __init__(self, num_feat, squeeze_factor=16):
|
|
super(ChannelAttention, self).__init__()
|
|
self.attention = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d(1),
|
|
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
|
|
nn.Sigmoid())
|
|
|
|
def forward(self, x):
|
|
y = self.attention(x)
|
|
return x * y
|
|
|
|
|
|
class CAB(nn.Module):
|
|
|
|
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30, conv_type=''):
|
|
super(CAB, self).__init__()
|
|
self.num_feat, self.compress_ratio, self.squeeze_factor = num_feat, compress_ratio, squeeze_factor
|
|
if conv_type == '':
|
|
self.cab = nn.Sequential(
|
|
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
|
|
nn.GELU(),
|
|
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
|
|
ChannelAttention(num_feat, squeeze_factor)
|
|
)
|
|
else:
|
|
self.cab = nn.Sequential(*self.block_selection(conv_type))
|
|
|
|
def block_selection(self, conv_type: str):
|
|
'''
|
|
only support post-ca; max conv num 2
|
|
'''
|
|
self.conv_type = conv_type
|
|
conv_types = conv_type.split('-')
|
|
keep_dim = ('dw' in conv_type) or (conv_type.count('conv') < 2)
|
|
|
|
dims = [self.num_feat, self.num_feat // (self.compress_ratio if not keep_dim else 1), self.num_feat]
|
|
conv_num = 0
|
|
blocks = list()
|
|
for name in conv_types:
|
|
if name == 'ca':
|
|
break
|
|
elif name == 'gelu':
|
|
blocks.append(nn.GELU())
|
|
elif name.startswith('conv'):
|
|
blocks.append(nn.Conv2d(dims[conv_num], dims[conv_num + 1], int(name[-1]), 1, (int(name[-1]) - 1) // 2))
|
|
conv_num += 1
|
|
elif name.startswith('dwconv'):
|
|
blocks.append(nn.Conv2d(dims[conv_num], dims[conv_num + 1], int(name[-1]), 1, (int(name[-1]) - 1) // 2,
|
|
groups=dims[conv_num]))
|
|
conv_num += 1
|
|
|
|
blocks.append(ChannelAttention(self.num_feat, self.squeeze_factor))
|
|
|
|
return blocks
|
|
|
|
def forward(self, x):
|
|
''' x: (b c h w)
|
|
output: (b c h w)
|
|
'''
|
|
return self.cab(x)
|
|
|
|
def flops(self, n):
|
|
flops = 0
|
|
if self.conv_type == 'dwconv3-gelu-conv1-ca':
|
|
flops += self.num_feat * 9 * n + self.num_feat * self.num_feat * 1 * n
|
|
elif self.conv_type == 'conv3-gelu-conv3-ca':
|
|
flops += 2 * self.num_feat * (self.num_feat // self.compress_ratio) * 9 * n
|
|
else:
|
|
flops += 2 * self.num_feat * (
|
|
1 if True else (self.num_feat // self.compress_ratio)) * 9 * n
|
|
flops += 2 * (self.num_feat // self.squeeze_factor) * self.num_feat * 1 * 1 * 1
|
|
return flops
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
|
"""
|
|
if drop_prob == 0. or not training:
|
|
return x
|
|
keep_prob = 1 - drop_prob
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
|
random_tensor.floor_()
|
|
output = x.div(keep_prob) * random_tensor
|
|
return output
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
|
"""
|
|
|
|
def __init__(self, drop_prob=None):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
|
|
def forward(self, x):
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class dwconv(nn.Module):
|
|
def __init__(self, hidden_features, tp='dwconv5'):
|
|
super(dwconv, self).__init__()
|
|
self.depthwise_conv = nn.Sequential(
|
|
nn.Conv2d(hidden_features, hidden_features, kernel_size=int(tp[-1]), stride=1,
|
|
padding=(int(tp[-1]) - 1) // 2, dilation=1,
|
|
groups=hidden_features if tp.startswith('dw') else 1), nn.GELU())
|
|
self.hidden_features = hidden_features
|
|
|
|
def forward(self, x, x_size):
|
|
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous()
|
|
x = self.depthwise_conv(x)
|
|
x = x.flatten(2).transpose(1, 2).contiguous()
|
|
return x
|
|
|
|
|
|
class ConvFFN(nn.Module):
|
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., **kwargs):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.in_features, self.hidden_features = in_features, hidden_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.before_add = nn.Identity()
|
|
self.after_add = nn.Identity()
|
|
if kwargs.get('FFNtype') is None:
|
|
self.kernel_size = 5
|
|
self.dwconv = dwconv(hidden_features=hidden_features)
|
|
elif kwargs.get('FFNtype') == 'none':
|
|
self.kernel_size = 0
|
|
self.dwconv = nn.Identity()
|
|
elif kwargs.get('FFNtype').startswith('basic'):
|
|
self.kernel_size = int(kwargs.get('FFNtype')[-1])
|
|
self.dwconv = dwconv(hidden_features=hidden_features, tp=kwargs.get('FFNtype').split('-')[-1])
|
|
else:
|
|
raise NotImplementedError(f'FFNType {(kwargs.get("FFNtype"))} not implemented!')
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x, x_size):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.before_add(x)
|
|
if self.kernel_size > 0:
|
|
x = x + self.dwconv(x, x_size)
|
|
x = self.after_add(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
def flops(self, n):
|
|
flops = 2 * n * self.in_features * self.hidden_features
|
|
flops += n * self.kernel_size * self.kernel_size * self.hidden_features
|
|
return flops
|
|
|
|
|
|
class IPG_Grapher(nn.Module):
|
|
|
|
def __init__(self, dim, window_size, num_heads, bias=True, proj_drop=0.,
|
|
unfold_dict=None, head_wise=None, top_k=None, **kwargs):
|
|
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.group_size = window_size
|
|
self.num_heads = num_heads
|
|
|
|
|
|
self.unfold_dict = unfold_dict
|
|
self.head_wise = head_wise
|
|
self.top_k = top_k
|
|
self.sample_size = unfold_dict['kernel_size']
|
|
self.graph_switch = kwargs.get('graph_switch', True)
|
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
|
|
|
self.proj_group = nn.Linear(dim, dim, bias=bias)
|
|
self.proj_sample = nn.Linear(dim, dim * 2, bias=bias)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(512, num_heads, bias=False))
|
|
|
|
|
|
relative_coords_h = torch.arange(-(self.sample_size[0] - 1), self.group_size[0], dtype=torch.float32)
|
|
relative_coords_w = torch.arange(-(self.sample_size[1] - 1), self.group_size[1], dtype=torch.float32)
|
|
relative_coords_table = torch.stack(
|
|
torch.meshgrid([relative_coords_h,
|
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)
|
|
|
|
relative_coords_table[:, :, :, 0] /= (self.group_size[0] - 1)
|
|
relative_coords_table[:, :, :, 1] /= (self.group_size[1] - 1)
|
|
relative_coords_table *= 8
|
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table)
|
|
|
|
relative_position_index = self.get_rel_pos_index()
|
|
self.register_buffer("relative_position_index", relative_position_index)
|
|
|
|
self.relative_position_bias_table = None
|
|
|
|
def get_rel_pos_index(self):
|
|
group_size = self.group_size
|
|
sample_size = self.unfold_dict['kernel_size']
|
|
|
|
coords_grid = torch.stack(torch.meshgrid([torch.arange(group_size[0]), torch.arange(group_size[1])]))
|
|
coords_grid_flatten = torch.flatten(coords_grid, 1)
|
|
|
|
coords_sample = torch.stack(torch.meshgrid([torch.arange(sample_size[0]), torch.arange(sample_size[1])]))
|
|
coords_sample_flatten = torch.flatten(coords_sample, 1)
|
|
|
|
relative_coords = coords_sample_flatten[:, None, :] - coords_grid_flatten[:, :, None]
|
|
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
relative_coords[:, :, 0] += group_size[0] - sample_size[0] + 1
|
|
relative_coords[:, :, 0] *= group_size[1] + sample_size[1] - 1
|
|
relative_coords[:, :, 1] += group_size[1] - sample_size[1] + 1
|
|
|
|
relative_position_index = relative_coords.sum(-1)
|
|
return relative_position_index
|
|
|
|
def rel_pos_bias(self):
|
|
if self.training and self.relative_position_bias_table is not None:
|
|
self.relative_position_bias_table = None
|
|
|
|
if not self.training and self.relative_position_bias_table is not None:
|
|
relative_position_bias_table = self.relative_position_bias_table
|
|
else:
|
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
|
|
|
if not self.training and self.relative_position_bias_table is None:
|
|
self.relative_position_bias_table = relative_position_bias_table
|
|
|
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
|
self.group_size[0] * self.group_size[1], self.sample_size[0] * self.sample_size[1], -1)
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
|
return relative_position_bias.unsqueeze(0)
|
|
|
|
def get_correlation(self, x1, x2, graph):
|
|
scale = torch.exp(torch.clamp(self.logit_scale, max=4.6052))
|
|
if self.graph_switch:
|
|
assert (x1.size(-2) == graph.size(-2)) and (x2.size(-2) == graph.size(-1))
|
|
|
|
sim = cossim(x1, x2, graph=graph if self.graph_switch else None)
|
|
|
|
sim = sim * scale + self.rel_pos_bias()
|
|
|
|
sim = F.softmax(sim, dim=-1)
|
|
|
|
return sim
|
|
|
|
def forward(self, x_complete, graph=None, sampling_method=0):
|
|
|
|
if sampling_method == 0:
|
|
x = local_sampling(x_complete, group_size=self.group_size, unfold_dict=None, output=0, tp='bhwc')
|
|
else:
|
|
x = global_sampling(x_complete, group_size=self.group_size, sample_size=None, output=0, tp='bhwc')
|
|
|
|
b_, n, c = x.shape
|
|
x1 = einops.rearrange(self.proj_group(x), 'b n (h c) -> b h n c', b=b_, n=n, h=self.num_heads)
|
|
|
|
if sampling_method == 0:
|
|
x_sampled = local_sampling(self.proj_sample(x_complete), group_size=self.group_size,
|
|
unfold_dict=self.unfold_dict, output=1, tp='bhwc')
|
|
else:
|
|
x_sampled = global_sampling(self.proj_sample(x_complete), group_size=self.group_size,
|
|
sample_size=self.sample_size, output=1, tp='bhwc')
|
|
|
|
x2, feat = einops.rearrange(x_sampled, 'b n (div h c) -> div b h n c', div=2, h=self.num_heads,
|
|
c=c // self.num_heads)
|
|
|
|
corr = self.get_correlation(x1, x2, graph)
|
|
|
|
x = (corr @ feat).transpose(1, 2).reshape(b_, n, c)
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'dim={self.dim}, top_k={self.top_k}, ' \
|
|
f'sample_size={self.sample_size}'
|
|
|
|
def flops(self, N):
|
|
|
|
flops = 0
|
|
|
|
flops += N * self.dim * 2 * self.dim
|
|
|
|
flops += N * self.dim * self.dim
|
|
|
|
flops += N * self.dim * self.top_k
|
|
flops += self.num_heads * N * self.sample_size[0] * self.sample_size[1]
|
|
|
|
flops += N * self.dim * self.top_k
|
|
|
|
flops += N * self.dim * self.dim
|
|
return flops
|
|
|
|
|
|
class GAL(nn.Module):
|
|
|
|
def __init__(self, dim, input_resolution, num_heads, window_size=7, sampling_method=0,
|
|
mlp_ratio=4., bias=True, drop=0., drop_path=0.,
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, **kwargs):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.input_resolution = input_resolution
|
|
self.num_heads = num_heads
|
|
self.window_size = window_size
|
|
self.sampling_method = sampling_method
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
self.grapher = IPG_Grapher(
|
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
|
bias=bias, proj_drop=drop, **kwargs)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, **kwargs)
|
|
attn_mask = None
|
|
|
|
self.register_buffer("attn_mask", attn_mask)
|
|
|
|
'''CAB related'''
|
|
self.conv_scale = kwargs.get('conv_scale') or 0
|
|
compress_ratio = kwargs.get('compress_ratio') or 3
|
|
squeeze_factor = kwargs.get('squeeze_factor') or 30
|
|
conv_type = kwargs.get('conv_type') or ''
|
|
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor,
|
|
conv_type=conv_type) if self.conv_scale != 0 else None
|
|
|
|
def forward(self, x, x_size, graph):
|
|
H, W = x_size
|
|
B, _, C = x.shape
|
|
|
|
shortcut = x
|
|
x = x.view(B, H, W, C)
|
|
conv_x = self.conv_block(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1).contiguous().view(B, H * W,
|
|
C) if self.conv_scale != 0 else 0
|
|
|
|
x = self.grapher(x, graph=graph[0] if self.sampling_method == 0 else graph[1],
|
|
sampling_method=self.sampling_method)
|
|
|
|
|
|
if self.sampling_method:
|
|
x = einops.rearrange(x, '(b numh numw) (sh sw) c -> b (sh numh sw numw) c', numh=H // self.window_size,
|
|
numw=W // self.window_size, sh=self.window_size, sw=self.window_size)
|
|
else:
|
|
x = einops.rearrange(x, '(b numh numw) (sh sw) c -> b (numh sh numw sw) c', numh=H // self.window_size,
|
|
numw=W // self.window_size, sh=self.window_size, sw=self.window_size)
|
|
|
|
x = shortcut + self.drop_path(self.norm1(x)) + conv_x * self.conv_scale
|
|
|
|
|
|
x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))
|
|
|
|
return x
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"dim={self.dim}, sampling_method={self.sampling_method}, mlp_ratio={self.mlp_ratio}"
|
|
|
|
def flops(self):
|
|
flops = 0
|
|
H, W = self.input_resolution
|
|
|
|
flops += self.dim * H * W
|
|
|
|
flops += self.grapher.flops(H * W)
|
|
|
|
if self.conv_scale != 0:
|
|
flops += nW * self.conv_block.flops(self.window_size * self.window_size)
|
|
|
|
flops += self.mlp.flops(H * W)
|
|
|
|
flops += self.dim * H * W
|
|
return flops
|
|
|
|
|
|
class PatchMerging(nn.Module):
|
|
r""" Patch Merging Layer.
|
|
|
|
Args:
|
|
input_resolution (tuple[int]): Resolution of input feature.
|
|
dim (int): Number of input channels.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
"""
|
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.input_resolution = input_resolution
|
|
self.dim = dim
|
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
|
self.norm = norm_layer(4 * dim)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
x: b, h*w, c
|
|
"""
|
|
h, w = self.input_resolution
|
|
b, seq_len, c = x.shape
|
|
assert seq_len == h * w, 'input feature has wrong size'
|
|
assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'
|
|
|
|
x = x.view(b, h, w, c)
|
|
|
|
x0 = x[:, 0::2, 0::2, :]
|
|
x1 = x[:, 1::2, 0::2, :]
|
|
x2 = x[:, 0::2, 1::2, :]
|
|
x3 = x[:, 1::2, 1::2, :]
|
|
x = torch.cat([x0, x1, x2, x3], -1)
|
|
x = x.view(b, -1, 4 * c)
|
|
|
|
x = self.norm(x)
|
|
x = self.reduction(x)
|
|
|
|
return x
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'input_resolution={self.input_resolution}, dim={self.dim}'
|
|
|
|
def flops(self):
|
|
h, w = self.input_resolution
|
|
flops = h * w * self.dim
|
|
flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim
|
|
return flops
|
|
|
|
|
|
class BasicLayer(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
input_resolution,
|
|
depth,
|
|
num_heads,
|
|
window_size,
|
|
mlp_ratio=4.,
|
|
bias=True,
|
|
drop=0.,
|
|
drop_path=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
downsample=None,
|
|
use_checkpoint=False, stage_idx=None, **kwargs):
|
|
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.input_resolution = input_resolution
|
|
self.depth = depth
|
|
self.use_checkpoint = use_checkpoint
|
|
|
|
stages = kwargs.get('stage_spec')[stage_idx]
|
|
|
|
blocks = []
|
|
for i in range(depth):
|
|
if stages[i] == 'GN':
|
|
block = GAL(
|
|
dim=dim,
|
|
input_resolution=input_resolution,
|
|
num_heads=num_heads,
|
|
window_size=window_size,
|
|
sampling_method=0,
|
|
mlp_ratio=mlp_ratio,
|
|
bias=bias,
|
|
drop=drop,
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
|
norm_layer=norm_layer, **kwargs
|
|
)
|
|
elif stages[i] == 'GS':
|
|
block = GAL(
|
|
dim=dim,
|
|
input_resolution=input_resolution,
|
|
num_heads=num_heads,
|
|
window_size=window_size,
|
|
sampling_method=1,
|
|
mlp_ratio=mlp_ratio,
|
|
bias=bias,
|
|
drop=drop,
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
|
norm_layer=norm_layer, **kwargs
|
|
)
|
|
|
|
blocks.append(block)
|
|
self.blocks = nn.ModuleList(blocks)
|
|
|
|
|
|
if downsample is not None:
|
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
|
else:
|
|
self.downsample = None
|
|
|
|
def forward(self, x, x_size, graph):
|
|
for blk in self.blocks:
|
|
if self.use_checkpoint:
|
|
x = checkpoint.checkpoint(blk, x)
|
|
else:
|
|
x = blk(x, x_size, graph)
|
|
if self.downsample is not None:
|
|
x = self.downsample(x)
|
|
return x
|
|
|
|
def extra_repr(self) -> str:
|
|
return f'dim={self.dim}, depth={self.depth}'
|
|
|
|
def flops(self):
|
|
flops = 0
|
|
for blk in self.blocks:
|
|
flops += blk.flops()
|
|
if self.downsample is not None:
|
|
flops += self.downsample.flops()
|
|
return flops
|
|
|
|
|
|
class MGB(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
input_resolution,
|
|
depth,
|
|
num_heads,
|
|
window_size,
|
|
mlp_ratio=4.,
|
|
bias=True,
|
|
drop=0.,
|
|
drop_path=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
downsample=None,
|
|
use_checkpoint=False,
|
|
img_size=224,
|
|
patch_size=4,
|
|
resi_connection='1conv', stage_idx=None, **kwargs):
|
|
super(MGB, self).__init__()
|
|
self.kwargs = kwargs
|
|
|
|
self.dim = dim
|
|
self.input_resolution = input_resolution
|
|
|
|
self.window_size = window_size
|
|
self.sample_size = kwargs.get('sample_size')
|
|
self.padding_size = (self.sample_size - self.window_size) // 2
|
|
self.unfold_dict = dict(kernel_size=(self.sample_size, self.sample_size), stride=(window_size, window_size),
|
|
padding=(self.padding_size, self.padding_size))
|
|
|
|
|
|
self.num_head = num_heads
|
|
self.graph_flag = kwargs.get('graph_flags')[stage_idx]
|
|
self.head_wise = kwargs.get('head_wise', 0)
|
|
self.dist_type = kwargs.get('dist_type')
|
|
|
|
self.fast_graph = kwargs.get('fast_graph', 1)
|
|
|
|
self.dist = cossim
|
|
self.top_k = kwargs.get('top_k')[stage_idx] if isinstance(kwargs.get('top_k'), list) else kwargs.get('top_k')
|
|
|
|
self.flex_type = kwargs.get('flex_type')
|
|
self.graph_switch = kwargs.get('graph_switch')
|
|
|
|
self.stage_idx = stage_idx
|
|
self.output_folder = kwargs.get('output_folder')
|
|
|
|
|
|
self.diff_scale = kwargs.get('diff_scales')[stage_idx] if kwargs.get(
|
|
'diff_scales') is not None else None
|
|
|
|
self.residual_group = BasicLayer(
|
|
dim=dim,
|
|
input_resolution=input_resolution,
|
|
depth=depth,
|
|
num_heads=num_heads,
|
|
window_size=window_size,
|
|
mlp_ratio=mlp_ratio,
|
|
bias=bias,
|
|
drop=drop,
|
|
drop_path=drop_path,
|
|
norm_layer=norm_layer,
|
|
downsample=downsample,
|
|
use_checkpoint=use_checkpoint, stage_idx=stage_idx, unfold_dict=self.unfold_dict, **kwargs)
|
|
|
|
if resi_connection == '1conv':
|
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
|
elif resi_connection == '3conv':
|
|
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
|
|
|
self.patch_unembed = PatchUnEmbed(
|
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
|
|
|
self.tensors = None
|
|
self.tolerance = kwargs.get('tolerance', 8)
|
|
|
|
def diff(self, x, shape=(80, 80), scale=2, he=1):
|
|
''' x: (B,H*W,C)
|
|
diff: (B, H, W)
|
|
'''
|
|
B, _, C = x.shape
|
|
H, W = shape
|
|
x_rs = x.view(B, H, W, C // he, he).mean(-1).permute(0, 3, 1, 2)
|
|
return (x_rs - F.interpolate(
|
|
F.interpolate(x_rs, (H // scale, W // scale), mode='bilinear', align_corners=False), (H, W),
|
|
mode='bilinear', align_corners=False)).abs().sum(dim=1)
|
|
|
|
@torch.no_grad()
|
|
def calc_graph(self, x_, x_size, sim_matric=None):
|
|
if self.output_folder is not None:
|
|
list_to_save.append(x_.cpu())
|
|
if not self.graph_switch:
|
|
return None, None
|
|
|
|
|
|
if self.fast_graph and self.tensors is None:
|
|
self.tensors = (
|
|
torch.tensor([
|
|
[0.5, 1., 0.],
|
|
[0., 0., 0.],
|
|
[0.5, 0., 1.],
|
|
], dtype=torch.float32).to(x_.device),
|
|
torch.tensor([
|
|
[0.5, 0., 1.],
|
|
[0.5, 1., 0.],
|
|
[0., 0., 0.],
|
|
], dtype=torch.float32).to(x_.device)
|
|
)
|
|
|
|
''' Added: x_diff for interdiff_plain'''
|
|
X_diff = [None, None]
|
|
if self.flex_type.startswith('interdiff'):
|
|
X_diff = self.diff(x_, x_size)
|
|
if (self.diff_scale is not None) and (self.diff_scale != 0):
|
|
|
|
mu = X_diff.mean(dim=(-2, -1), keepdim=True)
|
|
X_diff = mu + (X_diff - mu) / self.diff_scale
|
|
|
|
|
|
|
|
if sim_matric != None:
|
|
X_diff = X_diff*sim_matric.detach()
|
|
|
|
X_diff = [
|
|
einops.rearrange(X_diff, 'b (numh wh) (numw ww)-> (b numh numw) (wh ww)', wh=self.window_size,
|
|
ww=self.window_size),
|
|
einops.rearrange(X_diff, 'b (sh numh) (sw numw) -> (b numh numw) (sh sw)', sh=self.window_size,
|
|
sw=self.window_size)
|
|
]
|
|
|
|
graph0 = self.calc_graph_(x_, x_size, sampling_method=0, X_diff=X_diff[0])
|
|
graph1 = self.calc_graph_(x_, x_size, sampling_method=1, X_diff=X_diff[1])
|
|
return (graph0, graph1)
|
|
|
|
@torch.no_grad()
|
|
def calc_graph_(self, x_, x_size, sampling_method=0, X_diff=None):
|
|
''' x: (b c h w)
|
|
'''
|
|
|
|
he = self.num_head if self.head_wise else 1
|
|
x = einops.rearrange(x_, 'b (h w) c -> b c h w', h=x_size[0], w=x_size[1])
|
|
|
|
if sampling_method:
|
|
X_sample, Y_sample = global_sampling(x, group_size=self.window_size, sample_size=self.sample_size, output=2,
|
|
tp='bchw')
|
|
else:
|
|
X_sample, Y_sample = local_sampling(x, group_size=self.window_size, unfold_dict=self.unfold_dict, output=2,
|
|
tp='bchw')
|
|
|
|
assert X_sample.size(0) == Y_sample.size(0)
|
|
|
|
D = self.dist(X_sample.unsqueeze(1), Y_sample.unsqueeze(1)).squeeze(1)
|
|
|
|
if self.fast_graph:
|
|
maskarray = (X_diff / X_diff.sum(dim=-1, keepdim=True)) * D.size(1) * self.top_k
|
|
maskarray = torch.clamp(maskarray, 1, D.size(-1))
|
|
|
|
|
|
minbound = torch.min(D, dim=-1, keepdim=True)[0]
|
|
maxbound = torch.ones_like(minbound)
|
|
wall = D.mean(dim=-1, keepdim=True)
|
|
MAT = torch.cat([wall, minbound, maxbound], dim=-1)
|
|
|
|
for _ in range(self.tolerance):
|
|
allocated = (D > MAT[..., 0:1]).sum(dim=-1)
|
|
MAT = torch.where(
|
|
(allocated > maskarray).unsqueeze(-1),
|
|
MAT @ self.tensors[0],
|
|
MAT @ self.tensors[1],
|
|
)
|
|
|
|
graph = (D > MAT[..., 0:1]).unsqueeze(1)
|
|
else:
|
|
val, idx = D.sort(dim=-1, descending=True)
|
|
b, m, n = idx.shape
|
|
|
|
mask = flex(D, X_sample, idx, self.flex_type, self.top_k, self.kwargs['model'].current_iter,
|
|
self.kwargs['model'].total_iters, X_diff, fast=True)
|
|
|
|
if not self.head_wise:
|
|
idx = idx.unsqueeze(1).expand(b, 1, m, n)
|
|
mask = mask.unsqueeze(1).expand(b, 1, m, n)
|
|
else:
|
|
idx = einops.rearrange(idx, '(b he) m n -> b he m n', he=he)
|
|
mask = einops.rearrange(mask, '(b he) m n -> b he m n', he=he)
|
|
original_shape = idx.shape
|
|
b_coord = torch.arange(idx.size(0), device=idx.device).int().view(-1, 1, 1, 1) * np.prod(original_shape[1:])
|
|
he_coord = torch.arange(idx.size(1), device=idx.device).int().view(1, -1, 1, 1) * np.prod(
|
|
original_shape[2:])
|
|
m_coord = torch.arange(idx.size(2), device=idx.device).int().view(1, 1, -1, 1) * original_shape[3]
|
|
|
|
overall_coord = b_coord + he_coord + m_coord + idx
|
|
selected_coord = torch.masked_select(overall_coord, mask)
|
|
graph = torch.ones_like(idx).bool()
|
|
graph.view(-1)[selected_coord] = False
|
|
'''save graph'''
|
|
if self.output_folder is not None:
|
|
list_to_save.append(graph.cpu())
|
|
|
|
return graph
|
|
|
|
def forward(self, x, x_size, prev_graph=None, sim_matric=None):
|
|
graph = self.calc_graph(x, x_size, sim_matric) if self.graph_flag else prev_graph
|
|
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, graph), x_size))) + x, graph
|
|
|
|
def flops(self):
|
|
flops = 0
|
|
h, w = self.input_resolution
|
|
|
|
if self.graph_switch:
|
|
|
|
if self.flex_type == 'interdiff_plain':
|
|
flops += h // 2 * w // 2 * 4 * self.dim
|
|
flops += h * w * 4 * self.dim
|
|
flops += 2 * h * w * self.dim * self.sample_size * self.sample_size
|
|
if self.fast_graph:
|
|
sort_flops = 2 * self.tolerance * 3 * 3
|
|
else:
|
|
sort_flops = round(self.sample_size * self.sample_size * math.log2(self.sample_size * self.sample_size))
|
|
|
|
flops += sort_flops * h * w
|
|
flops += self.residual_group.flops()
|
|
flops += h * w * self.dim * self.dim * 9
|
|
flops += self.patch_embed.flops()
|
|
flops += self.patch_unembed.flops()
|
|
|
|
return flops
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
r""" Image to Patch Embedding
|
|
|
|
Args:
|
|
img_size (int): Image size. Default: 224.
|
|
patch_size (int): Patch token size. Default: 4.
|
|
in_chans (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
"""
|
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.patches_resolution = patches_resolution
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
|
|
|
self.in_chans = in_chans
|
|
self.embed_dim = embed_dim
|
|
|
|
if norm_layer is not None:
|
|
self.norm = norm_layer(embed_dim)
|
|
else:
|
|
self.norm = None
|
|
|
|
def forward(self, x):
|
|
x = x.flatten(2).transpose(1, 2)
|
|
if self.norm is not None:
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def flops(self):
|
|
flops = 0
|
|
h, w = self.img_size
|
|
if self.norm is not None:
|
|
flops += h * w * self.embed_dim
|
|
return flops
|
|
|
|
|
|
class PatchUnEmbed(nn.Module):
|
|
r""" Image to Patch Unembedding
|
|
|
|
Args:
|
|
img_size (int): Image size. Default: 224.
|
|
patch_size (int): Patch token size. Default: 4.
|
|
in_chans (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
"""
|
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.patches_resolution = patches_resolution
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
|
|
|
self.in_chans = in_chans
|
|
self.embed_dim = embed_dim
|
|
|
|
def forward(self, x, x_size):
|
|
x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1])
|
|
return x
|
|
|
|
def flops(self):
|
|
return 0
|
|
|
|
|
|
class Upsample(nn.Sequential):
|
|
"""Upsample module.
|
|
|
|
Args:
|
|
scale (int): Scale factor. Supported scales: 2^n and 3.
|
|
num_feat (int): Channel number of intermediate features.
|
|
"""
|
|
|
|
def __init__(self, scale, num_feat):
|
|
self.scale = scale
|
|
self.num_feat = num_feat
|
|
m = []
|
|
if (scale & (scale - 1)) == 0:
|
|
for _ in range(int(math.log(scale, 2))):
|
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(2))
|
|
elif scale == 3:
|
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(3))
|
|
else:
|
|
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
|
super(Upsample, self).__init__(*m)
|
|
|
|
def flops(self, n):
|
|
flops = 0
|
|
scale = self.scale
|
|
num_feat = self.num_feat
|
|
this_n = n
|
|
if (scale & (scale - 1)) == 0:
|
|
for _ in range(int(math.log(scale, 2))):
|
|
flops += num_feat * 4 * num_feat * 3 * 3 * this_n
|
|
this_n *= 4
|
|
elif scale == 3:
|
|
flops += num_feat * 9 * num_feat * 3 * 3 * n
|
|
|
|
return flops
|
|
|
|
|
|
class UpsampleOneStep(nn.Sequential):
|
|
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
|
Used in lightweight SR to save parameters.
|
|
|
|
Args:
|
|
scale (int): Scale factor. Supported scales: 2^n and 3.
|
|
num_feat (int): Channel number of intermediate features.
|
|
|
|
"""
|
|
|
|
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
|
self.num_feat = num_feat
|
|
self.input_resolution = input_resolution
|
|
m = []
|
|
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(scale))
|
|
super(UpsampleOneStep, self).__init__(*m)
|
|
|
|
def flops(self):
|
|
h, w = self.input_resolution
|
|
flops = h * w * self.num_feat * 3 * 9
|
|
return flops
|
|
|
|
|
|
class IPG(nn.Module):
|
|
|
|
def __init__(self,
|
|
img_size=64,
|
|
patch_size=1,
|
|
in_chans=3,
|
|
out_chans=32,
|
|
embed_dim=96,
|
|
depths=(6, 6, 6, 6),
|
|
num_heads=(6, 6, 6, 6),
|
|
window_size=7,
|
|
mlp_ratio=4.,
|
|
bias=True,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.1,
|
|
norm_layer=nn.LayerNorm,
|
|
ape=False,
|
|
patch_norm=True,
|
|
use_checkpoint=False,
|
|
upscale=2,
|
|
img_range=1.,
|
|
upsampler='',
|
|
resi_connection='1conv',
|
|
**kwargs):
|
|
super(IPG, self).__init__()
|
|
num_in_ch = in_chans
|
|
num_out_ch = out_chans
|
|
num_feat = 64
|
|
self.img_range = img_range
|
|
if in_chans == 3:
|
|
rgb_mean = (0.4488, 0.4371, 0.4040)
|
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
|
else:
|
|
self.mean = torch.zeros(1, 1, 1, 1)
|
|
self.upscale = upscale
|
|
self.upsampler = upsampler
|
|
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
|
|
|
|
|
self.num_layers = len(depths)
|
|
self.embed_dim = embed_dim
|
|
self.ape = ape
|
|
self.patch_norm = patch_norm
|
|
self.num_features = embed_dim
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=embed_dim,
|
|
embed_dim=embed_dim,
|
|
norm_layer=norm_layer if self.patch_norm else None)
|
|
num_patches = self.patch_embed.num_patches
|
|
patches_resolution = self.patch_embed.patches_resolution
|
|
self.patches_resolution = patches_resolution
|
|
|
|
|
|
self.patch_unembed = PatchUnEmbed(
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=embed_dim,
|
|
embed_dim=embed_dim,
|
|
norm_layer=norm_layer if self.patch_norm else None)
|
|
|
|
|
|
if self.ape:
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
|
trunc_normal_(self.absolute_pos_embed, std=.02)
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
|
|
|
''' Intermediate outputs '''
|
|
self.output_folder = kwargs.get('output_folder')
|
|
|
|
self.layers = nn.ModuleList()
|
|
for i_layer in range(self.num_layers):
|
|
layer = MGB(
|
|
dim=embed_dim,
|
|
input_resolution=(patches_resolution[0], patches_resolution[1]),
|
|
depth=depths[i_layer],
|
|
num_heads=num_heads[i_layer],
|
|
window_size=window_size,
|
|
mlp_ratio=self.mlp_ratio,
|
|
bias=bias,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
|
norm_layer=norm_layer,
|
|
downsample=None,
|
|
use_checkpoint=use_checkpoint,
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
resi_connection=resi_connection, stage_idx=i_layer, **kwargs)
|
|
self.layers.append(layer)
|
|
self.norm = norm_layer(self.num_features)
|
|
|
|
self.proj = nn.Linear(embed_dim, 1024)
|
|
self.proj2 = nn.Linear(64,1)
|
|
|
|
|
|
if resi_connection == '1conv':
|
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
|
elif resi_connection == '3conv':
|
|
|
|
self.conv_after_body = nn.Sequential(
|
|
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle':
|
|
|
|
self.conv_before_upsample = nn.Sequential(
|
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
|
self.upsample = Upsample(upscale, num_feat)
|
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
|
elif self.upsampler == 'pixelshuffledirect':
|
|
|
|
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
|
(patches_resolution[0], patches_resolution[1]))
|
|
elif self.upsampler == 'nearest+conv':
|
|
|
|
assert self.upscale == 4, 'only support x4 now.'
|
|
self.conv_before_upsample = nn.Sequential(
|
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
else:
|
|
|
|
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'absolute_pos_embed'}
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay_keywords(self):
|
|
return {'relative_position_bias_table'}
|
|
|
|
def forward_features(self, x, sim_matric=None):
|
|
x_size = (x.shape[2], x.shape[3])
|
|
x = self.patch_embed(x)
|
|
if self.ape:
|
|
x = x + self.absolute_pos_embed
|
|
x = self.pos_drop(x)
|
|
prev_graph = None
|
|
for layer in self.layers:
|
|
x, prev_graph = layer(x, x_size, prev_graph, sim_matric)
|
|
|
|
x = self.norm(x)
|
|
x = self.patch_unembed(x, x_size)
|
|
|
|
return x
|
|
|
|
def forward(self, x, sim_matric=None):
|
|
'''
|
|
Set index & save input
|
|
'''
|
|
if (self.output_folder is not None):
|
|
global list_to_save
|
|
if not os.path.isdir(self.output_folder):
|
|
os.makedirs(self.output_folder, exist_ok=True)
|
|
if len(os.listdir(self.output_folder)) > 0:
|
|
output_idx = max([int(i[:-4]) if i.endswith('.pkl') and i[:-4].isdecimal() else -1 for i in
|
|
os.listdir(self.output_folder)]) + 1
|
|
else:
|
|
output_idx = 0
|
|
list_to_save.append(x.cpu())
|
|
self.mean = self.mean.type_as(x)
|
|
x = (x - self.mean) * self.img_range
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle':
|
|
|
|
x = self.conv_first(x)
|
|
x = self.conv_after_body(self.forward_features(x)) + x
|
|
x = self.conv_before_upsample(x)
|
|
x = self.conv_last(self.upsample(x))
|
|
|
|
elif self.upsampler == 'sam':
|
|
|
|
x = self.conv_after_body(self.forward_features(x,sim_matric)) + x
|
|
x = self.proj2(x.flatten(2,3))
|
|
x = x.permute(0,2,1)
|
|
x=self.proj(x)
|
|
|
|
|
|
elif self.upsampler == 'pixelshuffledirect':
|
|
|
|
x = self.conv_first(x)
|
|
x = self.conv_after_body(self.forward_features(x)) + x
|
|
x = self.upsample(x)
|
|
elif self.upsampler == 'nearest+conv':
|
|
|
|
x = self.conv_first(x)
|
|
x = self.conv_after_body(self.forward_features(x)) + x
|
|
x = self.conv_before_upsample(x)
|
|
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
|
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
|
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
|
else:
|
|
|
|
x_first = self.conv_first(x)
|
|
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
|
x = x + self.conv_last(res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x
|
|
|
|
def flops(self):
|
|
flops = 0
|
|
h, w = self.patches_resolution
|
|
flops += h * w * 3 * self.embed_dim * 9
|
|
flops += self.patch_embed.flops()
|
|
for layer in self.layers:
|
|
flops += layer.flops()
|
|
flops += h * w * 3 * self.embed_dim * self.embed_dim
|
|
flops += self.upsample.flops(h * w)
|
|
return flops
|
|
|
|
|
|
if __name__ == '__main__':
|
|
upscale = 4
|
|
height = (512 // upscale)
|
|
width = (512 // upscale)
|
|
model = IPG(
|
|
upscale=4,
|
|
in_chans=3,
|
|
img_size=(height, width),
|
|
window_size=16,
|
|
img_range=1.,
|
|
depths=[6, 6, 6, 6, 6, 6],
|
|
embed_dim=180,
|
|
num_heads=[6, 6, 6, 6, 6, 6],
|
|
mlp_ratio=4,
|
|
upsampler='pixelshuffle',
|
|
resi_connection='1conv',
|
|
graph_flags=[1, 1, 1, 1, 1, 1],
|
|
stage_spec=[['GN', 'GS', 'GN', 'GS', 'GN', 'GS'], ['GN', 'GS', 'GN', 'GS', 'GN', 'GS'],
|
|
['GN', 'GS', 'GN', 'GS', 'GN', 'GS'], ['GN', 'GS', 'GN', 'GS', 'GN', 'GS'],
|
|
['GN', 'GS', 'GN', 'GS', 'GN', 'GS'], ['GN', 'GS', 'GN', 'GS', 'GN', 'GS']],
|
|
dist_type='cossim',
|
|
top_k=256,
|
|
head_wise=0,
|
|
sample_size=32,
|
|
graph_switch=1,
|
|
flex_type='interdiff_plain',
|
|
FFNtype='basic-dwconv3',
|
|
conv_scale=0,
|
|
conv_type='dwconv3-gelu-conv1-ca',
|
|
diff_scales=[10, 1.5, 1.5, 1.5, 1.5, 1.5],
|
|
fast_graph=1
|
|
)
|
|
print(model)
|
|
print(height, width, model.flops() / 1e9)
|
|
|
|
x = torch.randn((1, 3, height, width))
|
|
x = model(x)
|
|
print(x.shape) |