xmutly's picture
Upload 3 files
5df2892 verified
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import math, os
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
import torch.nn.functional as F
from IPG.arch_util import to_2tuple, trunc_normal_
import numpy as np
import einops
from IPG.ipg_kit import flex, cossim, local_sampling, global_sampling
list_to_save = list()
class ChannelAttention(nn.Module):
"""Channel attention used in RCAN.
Args:
num_feat (int): Channel number of intermediate features.
squeeze_factor (int): Channel squeeze factor. Default: 16.
"""
def __init__(self, num_feat, squeeze_factor=16):
super(ChannelAttention, self).__init__()
self.attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
nn.Sigmoid())
def forward(self, x):
y = self.attention(x)
return x * y
class CAB(nn.Module):
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30, conv_type=''):
super(CAB, self).__init__()
self.num_feat, self.compress_ratio, self.squeeze_factor = num_feat, compress_ratio, squeeze_factor
if conv_type == '':
self.cab = nn.Sequential(
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
nn.GELU(),
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
ChannelAttention(num_feat, squeeze_factor)
)
else:
self.cab = nn.Sequential(*self.block_selection(conv_type))
def block_selection(self, conv_type: str):
'''
only support post-ca; max conv num 2
'''
self.conv_type = conv_type
conv_types = conv_type.split('-')
keep_dim = ('dw' in conv_type) or (conv_type.count('conv') < 2)
dims = [self.num_feat, self.num_feat // (self.compress_ratio if not keep_dim else 1), self.num_feat]
conv_num = 0
blocks = list()
for name in conv_types:
if name == 'ca':
break
elif name == 'gelu':
blocks.append(nn.GELU())
elif name.startswith('conv'):
blocks.append(nn.Conv2d(dims[conv_num], dims[conv_num + 1], int(name[-1]), 1, (int(name[-1]) - 1) // 2))
conv_num += 1
elif name.startswith('dwconv'):
blocks.append(nn.Conv2d(dims[conv_num], dims[conv_num + 1], int(name[-1]), 1, (int(name[-1]) - 1) // 2,
groups=dims[conv_num]))
conv_num += 1
blocks.append(ChannelAttention(self.num_feat, self.squeeze_factor))
return blocks
def forward(self, x):
''' x: (b c h w)
output: (b c h w)
'''
return self.cab(x)
def flops(self, n):
flops = 0
if self.conv_type == 'dwconv3-gelu-conv1-ca':
flops += self.num_feat * 9 * n + self.num_feat * self.num_feat * 1 * n
elif self.conv_type == 'conv3-gelu-conv3-ca':
flops += 2 * self.num_feat * (self.num_feat // self.compress_ratio) * 9 * n
else:
flops += 2 * self.num_feat * (
1 if True else (self.num_feat // self.compress_ratio)) * 9 * n # two convs in cab
flops += 2 * (self.num_feat // self.squeeze_factor) * self.num_feat * 1 * 1 * 1 # channel_attention: 2 convs
return flops
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class dwconv(nn.Module):
def __init__(self, hidden_features, tp='dwconv5'):
super(dwconv, self).__init__()
self.depthwise_conv = nn.Sequential(
nn.Conv2d(hidden_features, hidden_features, kernel_size=int(tp[-1]), stride=1,
padding=(int(tp[-1]) - 1) // 2, dilation=1,
groups=hidden_features if tp.startswith('dw') else 1), nn.GELU())
self.hidden_features = hidden_features
def forward(self, x, x_size):
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous() # b Ph*Pw c
x = self.depthwise_conv(x)
x = x.flatten(2).transpose(1, 2).contiguous()
return x
class ConvFFN(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., **kwargs):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.in_features, self.hidden_features = in_features, hidden_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.before_add = nn.Identity()
self.after_add = nn.Identity()
if kwargs.get('FFNtype') is None:
self.kernel_size = 5
self.dwconv = dwconv(hidden_features=hidden_features)
elif kwargs.get('FFNtype') == 'none':
self.kernel_size = 0
self.dwconv = nn.Identity()
elif kwargs.get('FFNtype').startswith('basic'):
self.kernel_size = int(kwargs.get('FFNtype')[-1]) # figure out kernel size
self.dwconv = dwconv(hidden_features=hidden_features, tp=kwargs.get('FFNtype').split('-')[-1])
else:
raise NotImplementedError(f'FFNType {(kwargs.get("FFNtype"))} not implemented!')
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x, x_size):
x = self.fc1(x)
x = self.act(x)
x = self.before_add(x)
if self.kernel_size > 0:
x = x + self.dwconv(x, x_size)
x = self.after_add(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def flops(self, n):
flops = 2 * n * self.in_features * self.hidden_features # fc1, fc2
flops += n * self.kernel_size * self.kernel_size * self.hidden_features # dwconv
return flops
class IPG_Grapher(nn.Module):
def __init__(self, dim, window_size, num_heads, bias=True, proj_drop=0.,
unfold_dict=None, head_wise=None, top_k=None, **kwargs):
super().__init__()
self.dim = dim
self.group_size = window_size
self.num_heads = num_heads
# graph_related
self.unfold_dict = unfold_dict
self.head_wise = head_wise
self.top_k = top_k
self.sample_size = unfold_dict['kernel_size']
self.graph_switch = kwargs.get('graph_switch', True)
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
self.proj_group = nn.Linear(dim, dim, bias=bias)
self.proj_sample = nn.Linear(dim, dim * 2, bias=bias)
self.proj = nn.Linear(dim, dim)
# rel pos bias
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False))
# get relative_coords_table
relative_coords_h = torch.arange(-(self.sample_size[0] - 1), self.group_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.sample_size[1] - 1), self.group_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(
torch.meshgrid([relative_coords_h,
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
relative_coords_table[:, :, :, 0] /= (self.group_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.group_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer("relative_coords_table", relative_coords_table)
relative_position_index = self.get_rel_pos_index()
self.register_buffer("relative_position_index", relative_position_index)
self.relative_position_bias_table = None
def get_rel_pos_index(self):
group_size = self.group_size
sample_size = self.unfold_dict['kernel_size']
coords_grid = torch.stack(torch.meshgrid([torch.arange(group_size[0]), torch.arange(group_size[1])]))
coords_grid_flatten = torch.flatten(coords_grid, 1)
coords_sample = torch.stack(torch.meshgrid([torch.arange(sample_size[0]), torch.arange(sample_size[1])]))
coords_sample_flatten = torch.flatten(coords_sample, 1)
relative_coords = coords_sample_flatten[:, None, :] - coords_grid_flatten[:, :, None]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += group_size[0] - sample_size[0] + 1
relative_coords[:, :, 0] *= group_size[1] + sample_size[1] - 1
relative_coords[:, :, 1] += group_size[1] - sample_size[1] + 1
relative_position_index = relative_coords.sum(-1)
return relative_position_index
def rel_pos_bias(self):
if self.training and self.relative_position_bias_table is not None:
self.relative_position_bias_table = None # clear
if not self.training and self.relative_position_bias_table is not None:
relative_position_bias_table = self.relative_position_bias_table
else:
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
# store
if not self.training and self.relative_position_bias_table is None:
self.relative_position_bias_table = relative_position_bias_table
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.group_size[0] * self.group_size[1], self.sample_size[0] * self.sample_size[1], -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
return relative_position_bias.unsqueeze(0)
def get_correlation(self, x1, x2, graph):
scale = torch.exp(torch.clamp(self.logit_scale, max=4.6052))
if self.graph_switch:
assert (x1.size(-2) == graph.size(-2)) and (x2.size(-2) == graph.size(-1))
sim = cossim(x1, x2, graph=graph if self.graph_switch else None)
sim = sim * scale + self.rel_pos_bias()
sim = F.softmax(sim, dim=-1)
return sim
def forward(self, x_complete, graph=None, sampling_method=0):
if sampling_method == 0:
x = local_sampling(x_complete, group_size=self.group_size, unfold_dict=None, output=0, tp='bhwc')
else:
x = global_sampling(x_complete, group_size=self.group_size, sample_size=None, output=0, tp='bhwc')
b_, n, c = x.shape
x1 = einops.rearrange(self.proj_group(x), 'b n (h c) -> b h n c', b=b_, n=n, h=self.num_heads)
if sampling_method == 0:
x_sampled = local_sampling(self.proj_sample(x_complete), group_size=self.group_size,
unfold_dict=self.unfold_dict, output=1, tp='bhwc')
else:
x_sampled = global_sampling(self.proj_sample(x_complete), group_size=self.group_size,
sample_size=self.sample_size, output=1, tp='bhwc')
x2, feat = einops.rearrange(x_sampled, 'b n (div h c) -> div b h n c', div=2, h=self.num_heads,
c=c // self.num_heads)
corr = self.get_correlation(x1, x2, graph)
x = (corr @ feat).transpose(1, 2).reshape(b_, n, c)
x = self.proj(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, top_k={self.top_k}, ' \
f'sample_size={self.sample_size}'
def flops(self, N):
# calculate theoretical flops for graph aggregation
flops = 0
# parametrized similarity
flops += N * self.dim * 2 * self.dim
# self mapping
flops += N * self.dim * self.dim
# sim calc
flops += N * self.dim * self.top_k
flops += self.num_heads * N * self.sample_size[0] * self.sample_size[1] # relative pos
# aggregation
flops += N * self.dim * self.top_k
# project
flops += N * self.dim * self.dim
return flops
class GAL(nn.Module):
def __init__(self, dim, input_resolution, num_heads, window_size=7, sampling_method=0,
mlp_ratio=4., bias=True, drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, **kwargs):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.sampling_method = sampling_method
self.mlp_ratio = mlp_ratio
self.norm1 = norm_layer(dim)
self.grapher = IPG_Grapher(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
bias=bias, proj_drop=drop, **kwargs)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, **kwargs)
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
'''CAB related'''
self.conv_scale = kwargs.get('conv_scale') or 0
compress_ratio = kwargs.get('compress_ratio') or 3
squeeze_factor = kwargs.get('squeeze_factor') or 30
conv_type = kwargs.get('conv_type') or ''
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor,
conv_type=conv_type) if self.conv_scale != 0 else None
def forward(self, x, x_size, graph):
H, W = x_size
B, _, C = x.shape
shortcut = x
x = x.view(B, H, W, C)
conv_x = self.conv_block(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1).contiguous().view(B, H * W,
C) if self.conv_scale != 0 else 0
x = self.grapher(x, graph=graph[0] if self.sampling_method == 0 else graph[1],
sampling_method=self.sampling_method)
# regroup
if self.sampling_method:
x = einops.rearrange(x, '(b numh numw) (sh sw) c -> b (sh numh sw numw) c', numh=H // self.window_size,
numw=W // self.window_size, sh=self.window_size, sw=self.window_size)
else:
x = einops.rearrange(x, '(b numh numw) (sh sw) c -> b (numh sh numw sw) c', numh=H // self.window_size,
numw=W // self.window_size, sh=self.window_size, sw=self.window_size)
x = shortcut + self.drop_path(self.norm1(x)) + conv_x * self.conv_scale # Channel Attention
# FFN
x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, sampling_method={self.sampling_method}, mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# graph aggregation
flops += self.grapher.flops(H * W)
# Channel Attn
if self.conv_scale != 0:
flops += nW * self.conv_block.flops(self.window_size * self.window_size)
flops += self.mlp.flops(H * W)
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: b, h*w, c
"""
h, w = self.input_resolution
b, seq_len, c = x.shape
assert seq_len == h * w, 'input feature has wrong size'
assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'
x = x.view(b, h, w, c)
x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c
x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c
x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c
x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c
x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c
x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f'input_resolution={self.input_resolution}, dim={self.dim}'
def flops(self):
h, w = self.input_resolution
flops = h * w * self.dim
flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim
return flops
class BasicLayer(nn.Module):
def __init__(self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.,
bias=True,
drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False, stage_idx=None, **kwargs):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
stages = kwargs.get('stage_spec')[stage_idx]
blocks = []
for i in range(depth):
if stages[i] == 'GN':
block = GAL(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
sampling_method=0, # flag controlling local/global sampling
mlp_ratio=mlp_ratio,
bias=bias,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer, **kwargs
)
elif stages[i] == 'GS':
block = GAL(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
sampling_method=1, # flag controlling dense/sparse
mlp_ratio=mlp_ratio,
bias=bias,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer, **kwargs
)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, x_size, graph):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x, x_size, graph)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, depth={self.depth}'
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class MGB(nn.Module):
def __init__(self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.,
bias=True,
drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
img_size=224,
patch_size=4,
resi_connection='1conv', stage_idx=None, **kwargs):
super(MGB, self).__init__()
self.kwargs = kwargs
self.dim = dim
self.input_resolution = input_resolution
self.window_size = window_size
self.sample_size = kwargs.get('sample_size')
self.padding_size = (self.sample_size - self.window_size) // 2
self.unfold_dict = dict(kernel_size=(self.sample_size, self.sample_size), stride=(window_size, window_size),
padding=(self.padding_size, self.padding_size))
# graph related
self.num_head = num_heads
self.graph_flag = kwargs.get('graph_flags')[stage_idx]
self.head_wise = kwargs.get('head_wise', 0)
self.dist_type = kwargs.get('dist_type')
self.fast_graph = kwargs.get('fast_graph', 1)
self.dist = cossim
self.top_k = kwargs.get('top_k')[stage_idx] if isinstance(kwargs.get('top_k'), list) else kwargs.get('top_k')
# flex graph
self.flex_type = kwargs.get('flex_type')
self.graph_switch = kwargs.get('graph_switch')
self.stage_idx = stage_idx
self.output_folder = kwargs.get('output_folder')
# interdiff diff_scale: control ratio mean/variance of final budget
self.diff_scale = kwargs.get('diff_scales')[stage_idx] if kwargs.get(
'diff_scales') is not None else None # if diff_scale is 0: X_diff scaling not activated
self.residual_group = BasicLayer(
dim=dim,
input_resolution=input_resolution,
depth=depth,
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
bias=bias,
drop=drop,
drop_path=drop_path,
norm_layer=norm_layer,
downsample=downsample,
use_checkpoint=use_checkpoint, stage_idx=stage_idx, unfold_dict=self.unfold_dict, **kwargs)
if resi_connection == '1conv':
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
elif resi_connection == '3conv':
# to save parameters and memory
self.conv = nn.Sequential(
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim, 3, 1, 1))
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
self.patch_unembed = PatchUnEmbed(
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
self.tensors = None
self.tolerance = kwargs.get('tolerance', 8)
def diff(self, x, shape=(80, 80), scale=2, he=1):
''' x: (B,H*W,C)
diff: (B, H, W)
'''
B, _, C = x.shape
H, W = shape
x_rs = x.view(B, H, W, C // he, he).mean(-1).permute(0, 3, 1, 2)
return (x_rs - F.interpolate(
F.interpolate(x_rs, (H // scale, W // scale), mode='bilinear', align_corners=False), (H, W),
mode='bilinear', align_corners=False)).abs().sum(dim=1)
@torch.no_grad()
def calc_graph(self, x_, x_size, sim_matric=None):
if self.output_folder is not None:
list_to_save.append(x_.cpu())
if not self.graph_switch:
return None, None
# prepare const tensors
if self.fast_graph and self.tensors is None:
self.tensors = (
torch.tensor([
[0.5, 1., 0.],
[0., 0., 0.],
[0.5, 0., 1.],
], dtype=torch.float32).to(x_.device),
torch.tensor([
[0.5, 0., 1.],
[0.5, 1., 0.],
[0., 0., 0.],
], dtype=torch.float32).to(x_.device)
)
''' Added: x_diff for interdiff_plain'''
X_diff = [None, None]
if self.flex_type.startswith('interdiff'):
X_diff = self.diff(x_, x_size) # (b h w) do var on C dimension
if (self.diff_scale is not None) and (self.diff_scale != 0): # perform X_diff scaling
# affine transform
mu = X_diff.mean(dim=(-2, -1), keepdim=True) # (b 1 1)
X_diff = mu + (X_diff - mu) / self.diff_scale
################ overwrite X_diff to sim-matric
if sim_matric != None:
X_diff = X_diff*sim_matric.detach()#X_diff*sim_matric.detach()
X_diff = [
einops.rearrange(X_diff, 'b (numh wh) (numw ww)-> (b numh numw) (wh ww)', wh=self.window_size,
ww=self.window_size),
einops.rearrange(X_diff, 'b (sh numh) (sw numw) -> (b numh numw) (sh sw)', sh=self.window_size,
sw=self.window_size)
]
graph0 = self.calc_graph_(x_, x_size, sampling_method=0, X_diff=X_diff[0])
graph1 = self.calc_graph_(x_, x_size, sampling_method=1, X_diff=X_diff[1])
return (graph0, graph1)
@torch.no_grad()
def calc_graph_(self, x_, x_size, sampling_method=0, X_diff=None):
''' x: (b c h w)
'''
# head_wise: not implemented
he = self.num_head if self.head_wise else 1
x = einops.rearrange(x_, 'b (h w) c -> b c h w', h=x_size[0], w=x_size[1])
# cyclic shift
if sampling_method: # sparse global
X_sample, Y_sample = global_sampling(x, group_size=self.window_size, sample_size=self.sample_size, output=2,
tp='bchw')
else: # dense local
X_sample, Y_sample = local_sampling(x, group_size=self.window_size, unfold_dict=self.unfold_dict, output=2,
tp='bchw')
assert X_sample.size(0) == Y_sample.size(0)
D = self.dist(X_sample.unsqueeze(1), Y_sample.unsqueeze(1)).squeeze(1) # (b m n)
if self.fast_graph: # Fast graph construction
maskarray = (X_diff / X_diff.sum(dim=-1, keepdim=True)) * D.size(1) * self.top_k
maskarray = torch.clamp(maskarray, 1, D.size(-1))
# search for threshold
minbound = torch.min(D, dim=-1, keepdim=True)[0]
maxbound = torch.ones_like(minbound) # D.max(dim=-1, keepdim=True)
wall = D.mean(dim=-1, keepdim=True)
MAT = torch.cat([wall, minbound, maxbound], dim=-1)
for _ in range(self.tolerance):
allocated = (D > MAT[..., 0:1]).sum(dim=-1)
MAT = torch.where(
(allocated > maskarray).unsqueeze(-1),
MAT @ self.tensors[0],
MAT @ self.tensors[1],
)
graph = (D > MAT[..., 0:1]).unsqueeze(1) # add head dim
else:
val, idx = D.sort(dim=-1, descending=True) # (b m n)
b, m, n = idx.shape
mask = flex(D, X_sample, idx, self.flex_type, self.top_k, self.kwargs['model'].current_iter,
self.kwargs['model'].total_iters, X_diff, fast=True) # TODO: calc mask
if not self.head_wise: # expand for each head
idx = idx.unsqueeze(1).expand(b, 1, m, n) # b he m n
mask = mask.unsqueeze(1).expand(b, 1, m, n) # b he m n
else:
idx = einops.rearrange(idx, '(b he) m n -> b he m n', he=he)
mask = einops.rearrange(mask, '(b he) m n -> b he m n', he=he)
original_shape = idx.shape
b_coord = torch.arange(idx.size(0), device=idx.device).int().view(-1, 1, 1, 1) * np.prod(original_shape[1:])
he_coord = torch.arange(idx.size(1), device=idx.device).int().view(1, -1, 1, 1) * np.prod(
original_shape[2:])
m_coord = torch.arange(idx.size(2), device=idx.device).int().view(1, 1, -1, 1) * original_shape[3]
overall_coord = b_coord + he_coord + m_coord + idx
selected_coord = torch.masked_select(overall_coord, mask)
graph = torch.ones_like(idx).bool()
graph.view(-1)[selected_coord] = False # turned off connections
'''save graph'''
if self.output_folder is not None:
list_to_save.append(graph.cpu())
return graph
def forward(self, x, x_size, prev_graph=None, sim_matric=None):
graph = self.calc_graph(x, x_size, sim_matric) if self.graph_flag else prev_graph
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, graph), x_size))) + x, graph
def flops(self):
flops = 0
h, w = self.input_resolution
# self added: graph flops (2 graphs)
if self.graph_switch:
# interdiff_plain:
if self.flex_type == 'interdiff_plain':
flops += h // 2 * w // 2 * 4 * self.dim
flops += h * w * 4 * self.dim
flops += 2 * h * w * self.dim * self.sample_size * self.sample_size # matrix mul for GRAM (B, wH*wW, dim) * (B, dim, oH*oW); two graphs
if self.fast_graph:
sort_flops = 2 * self.tolerance * 3 * 3
else:
sort_flops = round(self.sample_size * self.sample_size * math.log2(self.sample_size * self.sample_size))
# print('SORT FLOPS:', sort_flops * h * w)
flops += sort_flops * h * w
flops += self.residual_group.flops()
flops += h * w * self.dim * self.dim * 9
flops += self.patch_embed.flops()
flops += self.patch_unembed.flops()
return flops
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
flops = 0
h, w = self.img_size
if self.norm is not None:
flops += h * w * self.embed_dim
return flops
class PatchUnEmbed(nn.Module):
r""" Image to Patch Unembedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
def forward(self, x, x_size):
x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c
return x
def flops(self): # self added
return 0
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
self.scale = scale
self.num_feat = num_feat
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
def flops(self, n):
flops = 0
scale = self.scale
num_feat = self.num_feat
this_n = n
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
flops += num_feat * 4 * num_feat * 3 * 3 * this_n
this_n *= 4
elif scale == 3:
flops += num_feat * 9 * num_feat * 3 * 3 * n
# print('Upsampler flops (G): ',flops//1e9)
return flops
class UpsampleOneStep(nn.Sequential):
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
Used in lightweight SR to save parameters.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
self.num_feat = num_feat
self.input_resolution = input_resolution
m = []
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
m.append(nn.PixelShuffle(scale))
super(UpsampleOneStep, self).__init__(*m)
def flops(self):
h, w = self.input_resolution
flops = h * w * self.num_feat * 3 * 9
return flops
class IPG(nn.Module):
def __init__(self,
img_size=64,
patch_size=1,
in_chans=3,
out_chans=32,
embed_dim=96,
depths=(6, 6, 6, 6),
num_heads=(6, 6, 6, 6),
window_size=7,
mlp_ratio=4.,
bias=True,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
upscale=2,
img_range=1.,
upsampler='',
resi_connection='1conv',
**kwargs):
super(IPG, self).__init__()
num_in_ch = in_chans
num_out_ch = out_chans
num_feat = 64
self.img_range = img_range
if in_chans == 3:
rgb_mean = (0.4488, 0.4371, 0.4040)
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
else:
self.mean = torch.zeros(1, 1, 1, 1)
self.upscale = upscale
self.upsampler = upsampler
# ------------------------- 1, shallow feature extraction ------------------------- #
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
# ------------------------- 2, deep feature extraction ------------------------- #
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = embed_dim
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=embed_dim,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# merge non-overlapping patches into image
self.patch_unembed = PatchUnEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=embed_dim,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
''' Intermediate outputs '''
self.output_folder = kwargs.get('output_folder')
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = MGB(
dim=embed_dim,
input_resolution=(patches_resolution[0], patches_resolution[1]),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
bias=bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
downsample=None,
use_checkpoint=use_checkpoint,
img_size=img_size,
patch_size=patch_size,
resi_connection=resi_connection, stage_idx=i_layer, **kwargs)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.proj = nn.Linear(embed_dim, 1024)
self.proj2 = nn.Linear(64,1)
# build the last conv layer in deep feature extraction
if resi_connection == '1conv':
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
elif resi_connection == '3conv':
# to save parameters and memory
self.conv_after_body = nn.Sequential(
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
# ------------------------- 3, high quality image reconstruction ------------------------- #
if self.upsampler == 'pixelshuffle':
# for classical SR
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
elif self.upsampler == 'pixelshuffledirect':
# for lightweight SR (to save parameters)
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
(patches_resolution[0], patches_resolution[1]))
elif self.upsampler == 'nearest+conv':
# for real-world SR (less artifacts)
assert self.upscale == 4, 'only support x4 now.'
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
# for image denoising and JPEG compression artifact reduction
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x, sim_matric=None):
x_size = (x.shape[2], x.shape[3])
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
prev_graph = None
for layer in self.layers:
x, prev_graph = layer(x, x_size, prev_graph, sim_matric)
x = self.norm(x) # b seq_len c
x = self.patch_unembed(x, x_size)
return x
def forward(self, x, sim_matric=None):
'''
Set index & save input
'''
if (self.output_folder is not None):
global list_to_save
if not os.path.isdir(self.output_folder):
os.makedirs(self.output_folder, exist_ok=True)
if len(os.listdir(self.output_folder)) > 0:
output_idx = max([int(i[:-4]) if i.endswith('.pkl') and i[:-4].isdecimal() else -1 for i in
os.listdir(self.output_folder)]) + 1
else:
output_idx = 0
list_to_save.append(x.cpu())
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
if self.upsampler == 'pixelshuffle':
# for classical SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
elif self.upsampler == 'sam':
# x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x,sim_matric)) + x
x = self.proj2(x.flatten(2,3))
x = x.permute(0,2,1)
x=self.proj(x)
# x = self.conv_before_upsample(x)
# x = self.conv_last(self.upsample(x))
elif self.upsampler == 'pixelshuffledirect':
# for lightweight SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.upsample(x)
elif self.upsampler == 'nearest+conv':
# for real-world SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
x = self.conv_last(self.lrelu(self.conv_hr(x)))
else:
# for image denoising and JPEG compression artifact reduction
x_first = self.conv_first(x)
res = self.conv_after_body(self.forward_features(x_first)) + x_first
x = x + self.conv_last(res)
# x = x / self.img_range + self.mean
# ''' Save '''
# if (self.output_folder is not None):
# list_to_save.append(x.cpu())
# torch.save(list_to_save, os.path.join(self.output_folder, str(output_idx) + '.pkl'))
# list_to_save = list()
return x
def flops(self):
flops = 0
h, w = self.patches_resolution
flops += h * w * 3 * self.embed_dim * 9
flops += self.patch_embed.flops()
for layer in self.layers:
flops += layer.flops()
flops += h * w * 3 * self.embed_dim * self.embed_dim
flops += self.upsample.flops(h * w)
return flops
if __name__ == '__main__':
upscale = 4
height = (512 // upscale)
width = (512 // upscale)
model = IPG(
upscale=4,
in_chans=3,
img_size=(height, width),
window_size=16,
img_range=1.,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=4,
upsampler='pixelshuffle',
resi_connection='1conv',
graph_flags=[1, 1, 1, 1, 1, 1],
stage_spec=[['GN', 'GS', 'GN', 'GS', 'GN', 'GS'], ['GN', 'GS', 'GN', 'GS', 'GN', 'GS'],
['GN', 'GS', 'GN', 'GS', 'GN', 'GS'], ['GN', 'GS', 'GN', 'GS', 'GN', 'GS'],
['GN', 'GS', 'GN', 'GS', 'GN', 'GS'], ['GN', 'GS', 'GN', 'GS', 'GN', 'GS']],
dist_type='cossim',
top_k=256,
head_wise=0,
sample_size=32,
graph_switch=1,
flex_type='interdiff_plain',
FFNtype='basic-dwconv3',
conv_scale=0,
conv_type='dwconv3-gelu-conv1-ca',
diff_scales=[10, 1.5, 1.5, 1.5, 1.5, 1.5],
fast_graph=1
)
print(model)
print(height, width, model.flops() / 1e9)
x = torch.randn((1, 3, height, width))
x = model(x)
print(x.shape)