File size: 5,076 Bytes
e1aaaac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from transformers import AutoModelForCausalLM, AutoTokenizer
import open_clip

from .flamingo import Flamingo
from .flamingo_lm import FlamingoLMMixin
from .utils import extend_instance


def create_model_and_transforms(
    clip_vision_encoder_path: str,
    clip_vision_encoder_pretrained: str,
    lang_encoder_path: str,
    tokenizer_path: str,
    cross_attn_every_n_layers: int = 1,
    use_local_files: bool = False,
    decoder_layers_attr_name: str = None,
    freeze_lm_embeddings: bool = False,
    **flamingo_kwargs,
):
    """
    Initialize a Flamingo model from a pretrained vision encoder and language encoder.
    Appends special tokens to the tokenizer and freezes backbones.

    Args:
        clip_vision_encoder_path (str): path to pretrained clip model (e.g. "ViT-B-32")
        clip_vision_encoder_pretrained (str): name of pretraining dataset for clip model (e.g. "laion2b_s32b_b79k")
        lang_encoder_path (str): path to pretrained language encoder
        tokenizer_path (str): path to pretrained tokenizer
        cross_attn_every_n_layers (int, optional): determines how often to add a cross-attention layer. Defaults to 1.
        use_local_files (bool, optional): whether to use local files. Defaults to False.
        decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
    Returns:
        Flamingo: Flamingo model from pretrained vision and language encoders
        Image processor: Pipeline to preprocess input images
        Tokenizer: A tokenizer for the language model
    """
    vision_encoder, _, image_processor = open_clip.create_model_and_transforms(
        clip_vision_encoder_path, pretrained=clip_vision_encoder_pretrained
    )
    # set the vision encoder to output the visual features
    vision_encoder.visual.output_tokens = True

    text_tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_path,
        local_files_only=use_local_files,
        trust_remote_code=True,
    )
    # add Flamingo special tokens to the tokenizer
    text_tokenizer.add_special_tokens(
        {"additional_special_tokens": ["<|endofchunk|>", "<image>"]}
    )
    if text_tokenizer.pad_token is None:
        # Issue: GPT models don't have a pad token, which we use to
        # modify labels for the loss.
        text_tokenizer.add_special_tokens({"pad_token": "<PAD>"})

    lang_encoder = AutoModelForCausalLM.from_pretrained(
        lang_encoder_path,
        local_files_only=use_local_files,
        trust_remote_code=True,
    )

    # hacks for MPT-1B, which doesn't have a get_input_embeddings method
    if "mpt-1b-redpajama-200b" in lang_encoder_path:

        class EmbeddingFnMixin:
            def get_input_embeddings(self):
                return self.transformer.wte

            def set_input_embeddings(self, new_embeddings):
                self.transformer.wte = new_embeddings

        extend_instance(lang_encoder, EmbeddingFnMixin)

    # convert LM to FlamingoLM
    extend_instance(lang_encoder, FlamingoLMMixin)

    if decoder_layers_attr_name is None:
        decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder)
    lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name)
    lang_encoder.resize_token_embeddings(len(text_tokenizer))

    model = Flamingo(
        vision_encoder,
        lang_encoder,
        text_tokenizer.encode("<|endofchunk|>")[-1],
        text_tokenizer.encode("<image>")[-1],
        vis_dim=open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"][
            "width"
        ],
        cross_attn_every_n_layers=cross_attn_every_n_layers,
        **flamingo_kwargs,
    )

    # Freeze all parameters
    model.requires_grad_(False)
    assert sum(p.numel() for p in model.parameters() if p.requires_grad) == 0

    # Unfreeze perceiver, gated_cross_attn_layers, and LM input embeddings
    model.perceiver.requires_grad_(True)
    model.lang_encoder.gated_cross_attn_layers.requires_grad_(True)
    if not freeze_lm_embeddings:
        model.lang_encoder.get_input_embeddings().requires_grad_(True)
        # TODO: investigate also training the output embeddings when untied

    print(
        f"Flamingo model initialized with {sum(p.numel() for p in model.parameters() if p.requires_grad)} trainable parameters"
    )

    return model, image_processor, text_tokenizer


def _infer_decoder_layers_attr_name(model):
    for k in __KNOWN_DECODER_LAYERS_ATTR_NAMES:
        if k.lower() in model.__class__.__name__.lower():
            return __KNOWN_DECODER_LAYERS_ATTR_NAMES[k]

    raise ValueError(
        f"We require the attribute name for the nn.ModuleList in the decoder storing the transformer block layers. Please supply this string manually."
    )


__KNOWN_DECODER_LAYERS_ATTR_NAMES = {
    "opt": "model.decoder.layers",
    "gptj": "transformer.h",
    "gpt-j": "transformer.h",
    "pythia": "gpt_neox.layers",
    "llama": "model.layers",
    "gptneoxforcausallm": "gpt_neox.layers",
    "mpt": "transformer.blocks",
    "mosaicgpt": "transformer.blocks",
}