File size: 6,659 Bytes
e1aaaac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from typing import List
from PIL import Image
import torch
from open_flamingo.eval.eval_model import BaseEvalModel
from open_flamingo.src.factory import create_model_and_transforms
from contextlib import suppress
from open_flamingo.eval.models.utils import unwrap_model
class EvalModel(BaseEvalModel):
"""OpenFlamingo model evaluation.
Attributes:
model (nn.Module): Underlying Torch model.
tokenizer (transformers.PreTrainedTokenizer): Tokenizer for model.
device: Index of GPU to use, or the string "CPU"
"""
def __init__(self, model_args):
assert (
"vision_encoder_path" in model_args
and "lm_path" in model_args
and "checkpoint_path" in model_args
and "lm_tokenizer_path" in model_args
and "cross_attn_every_n_layers" in model_args
and "vision_encoder_pretrained" in model_args
and "precision" in model_args
), "OpenFlamingo requires vision_encoder_path, lm_path, device, checkpoint_path, lm_tokenizer_path, cross_attn_every_n_layers, vision_encoder_pretrained, and precision arguments to be specified"
self.device = (
model_args["device"]
if ("device" in model_args and model_args["device"] >= 0)
else "cpu"
)
(
self.model,
self.image_processor,
self.tokenizer,
) = create_model_and_transforms(
model_args["vision_encoder_path"],
model_args["vision_encoder_pretrained"],
model_args["lm_path"],
model_args["lm_tokenizer_path"],
cross_attn_every_n_layers=int(model_args["cross_attn_every_n_layers"]),
)
checkpoint = torch.load(model_args["checkpoint_path"], map_location=self.device)
if "model_state_dict" in checkpoint:
checkpoint = checkpoint["model_state_dict"]
checkpoint = {k.replace("module.", ""): v for k, v in checkpoint.items()}
self.model.load_state_dict(checkpoint, strict=False)
self.model.to(self.device)
self.model.eval()
self.tokenizer.padding_side = "left"
# autocast
self.autocast = get_autocast(model_args["precision"])
self.cast_dtype = get_cast_dtype(model_args["precision"])
def _prepare_images(self, batch: List[List[torch.Tensor]]) -> torch.Tensor:
"""Preprocess images and stack them.
Args:
batch: A list of lists of images.
Returns:
A Tensor of shape
(batch_size, images_per_example, frames, channels, height, width).
"""
images_per_example = max(len(x) for x in batch)
batch_images = None
for iexample, example in enumerate(batch):
for iimage, image in enumerate(example):
preprocessed = self.image_processor(image)
if batch_images is None:
batch_images = torch.zeros(
(len(batch), images_per_example, 1) + preprocessed.shape,
dtype=preprocessed.dtype,
)
batch_images[iexample, iimage, 0] = preprocessed
return batch_images
def get_outputs(
self,
batch_text: List[str],
batch_images: List[List[Image.Image]],
min_generation_length: int,
max_generation_length: int,
num_beams: int,
length_penalty: float,
) -> List[str]:
encodings = self.tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
with torch.inference_mode():
with self.autocast():
outputs = unwrap_model(self.model).generate(
self._prepare_images(batch_images).to(
self.device, dtype=self.cast_dtype, non_blocking=True
),
input_ids.to(self.device, dtype=self.cast_dtype, non_blocking=True),
attention_mask=attention_mask.to(
self.device, dtype=self.cast_dtype, non_blocking=True
),
min_new_tokens=min_generation_length,
max_new_tokens=max_generation_length,
num_beams=num_beams,
length_penalty=length_penalty,
)
outputs = outputs[:, len(input_ids[0]) :]
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
def get_logits(
self,
lang_x: torch.Tensor,
vision_x: torch.Tensor = None,
attention_mask: torch.Tensor = None,
past_key_values: torch.Tensor = None,
clear_conditioned_layers: bool = False,
):
with torch.inference_mode():
with self.autocast():
outputs = self.model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
clear_conditioned_layers=clear_conditioned_layers,
past_key_values=past_key_values,
use_cache=(past_key_values is not None),
)
return outputs
def encode_vision_x(self, image_tensor: torch.Tensor):
unwrap_model(self.model)._encode_vision_x(image_tensor.to(self.device))
def uncache_media(self):
unwrap_model(self.model).uncache_media()
def cache_media(self, input_ids, vision_x):
unwrap_model(self.model).cache_media(input_ids=input_ids, vision_x=vision_x)
def get_vqa_prompt(self, question, answer=None) -> str:
return f"<image>Question:{question} Short answer:{answer if answer is not None else ''}{'<|endofchunk|>' if answer is not None else ''}"
def get_caption_prompt(self, caption=None) -> str:
return f"<image>Output:{caption if caption is not None else ''}{'<|endofchunk|>' if caption is not None else ''}"
def get_cast_dtype(precision: str):
cast_dtype = None
if precision == "bf16":
cast_dtype = torch.bfloat16
elif precision == "fp16":
cast_dtype = torch.float16
return cast_dtype
def get_autocast(precision):
if precision == "amp":
return torch.cuda.amp.autocast
elif precision == "amp_bfloat16" or precision == "amp_bf16":
# amp_bfloat16 is more stable than amp float16 for clip training
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
else:
return suppress
|