File size: 5,609 Bytes
d6f788a 2aa0c85 602c614 2aa0c85 602c614 2aa0c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# RobustVLM (Foundation Models) via Object-centric Learning
## Table of Contents
- [Installation](#installation)
- [Stage1: Get Object-centric Models](#models)
- [Dataset](#loading-pretrained-models)
- [Training](#summary-of-results)
## Installation
Create and activate anaconda environment:
```shell
conda create -n robustclip python==3.11
```
```shell
conda activate robustclip
```
The code is tested with Python 3.11. To install the required packages, run:
```shell
pip install -r requirements.txt
```
To install the open_clip_torch locally run:
```shell
cd ./open_clip_torch
```
```shell
python setup.py develop
```
## Stage1: Get Object-centric Models
### Dataset
Prepare the ImageNet dataset in a torch.ImageFolder style format:
```
dataset_path
└─imagenet
└─train
└─n01440764
xxxxxx.JPEG
.....
└─......
└─val
└─n04254680
xxxxxx.JPEG
.....
└─......
```
### Training
- Slot-Attention on 4GPUs
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train.training_clip_slots --clip_model_name ViT-L-14 --pretrained openai --dataset imagenet --imagenet_root /.../.../dataset_path/imagenet --template std --output_normalize False --steps 1000000 --warmup 10000 --batch_size 128 --loss l2 --opt adamw --lr 5e-5 --wd 1e-4 --attack pgd --inner_loss l2 --norm linf --eps 4 --iterations_adv 10 --stepsize_adv 1 --wandb False --output_dir ./output_slots --experiment_name SLOTS --log_freq 1000 --eval_freq 1000```
```
The results of reconstruction after slot-attention and ckps are stored in './output_slots/ViT-L-14_openai_imagenet_l2_imagenet_SLOTS_xxxxx'
## Stage2: Training and Evaluation with Object-centric Representations
- SlotVLM<sup>4</sup>
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train.adversarial_training_clip_with_object_token --clip_model_name ViT-L-14 --slots_ckp ./ckps/model_slots_step_300000.pt --pretrained openai --dataset imagenet --imagenet_root /path/to/imagenet --template std --output_normalize False --steps 20000 --warmup 1400 --batch_size 128 --loss l2 --opt adamw --lr 1e-5 --wd 1e-4 --attack pgd --inner_loss l2 --norm linf --eps 4 --iterations_adv 10 --stepsize_adv 1 --wandb False --output_dir ./output --experiment_name with_OT --log_freq 10 --eval_freq 10
```
Set `--eps 2` to obtain SlotVLM<sup>2</sup> models.
\
If you want to resume your training, just add some params like:
\
--optimizer_state /xxx/checkpoints/fallback_80000_opt.pt --start_step 80000 --pretrained none
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train.adversarial_training_clip_with_object_token --clip_model_name ViT-L-14 --slots_ckp ./ckps/model_slots_step_300000.pt --dataset imagenet --imagenet_root /path/to/imagenet --template std --output_normalize False --steps 20000 --warmup 1400 --batch_size 128 --loss l2 --opt adamw --lr 1e-5 --wd 1e-4 --attack pgd --inner_loss l2 --norm linf --eps 4 --iterations_adv 10 --stepsize_adv 1 --wandb False --output_dir ./output --experiment_name with_OT --log_freq 10 --eval_freq 10 --optimizer_state /home/xxx/RobustVLM/output/ViT-L-14_openai_imagenet_l2_imagenet_with_Object_Token_xxxxx/checkpoints/fallback_80000_opt.pt --start_step 80000 --pretrained none
```
## Evaluation
Make sure files in `bash` directory are executable: `chmod +x bash/*`
### CLIP ImageNet
```shell
python -m CLIP_eval.clip_robustbench --clip_model_name ViT-L-14 --pretrained /path/to/ckpt.pt --dataset imagenet --imagenet_root /path/to/imagenet --wandb False --norm linf --eps 2
```
⬆ You should notice the `--pretrained` and the `--eps 2/4` for SlotVLM<sup>2/4</sup> models.
### CLIP Zero-Shot
Set models to be evaluated in `CLIP_benchmark/benchmark/models.txt` and datasets in `CLIP_benchmark/benchmark/datasets.txt`
(the datasets are downloaded from HuggingFace). Then run
```shell
cd CLIP_benchmark
./bash/run_benchmark_adv.sh
```
### VLM Captioning and VQA
#### LLaVA
In `/bash/llava_eval.sh` supply paths for the datasets. The required annotation files for the datasets can be obtained from this [HuggingFace repository](https://huggingface.co/datasets/openflamingo/eval_benchmark/tree/main).
Set `--vision_encoder_pretrained` to `openai` or supply path to fine-tuned CLIP model checkpoint.
Then run
```shell
./bash/llava_eval.sh
```
The LLaVA model will be automatically downloaded from HuggingFace.
#### OpenFlamingo
Download the OpenFlamingo 9B [model](https://huggingface.co/openflamingo/OpenFlamingo-9B-vitl-mpt7b/tree/main), supply paths in `/bash/of_eval_9B.sh` and run
```shell
./bash/of_eval_9B.sh
```
Some non-standard annotation files are supplied [here](https://nc.mlcloud.uni-tuebingen.de/index.php/s/mtRnQFaZJkR9zaX) and [here](https://github.com/mlfoundations/open_flamingo/tree/main/open_flamingo/eval/data).
### VLM Stealthy Targeted Attacks
For targeted attacks on COCO, run
```shell
./bash/llava_eval_targeted.sh
```
For targeted attacks on self-selected images, set images and target captions in `vlm_eval/run_evaluation_qualitative.py` and run
```shell
python -m vlm_eval.run_evaluation_qualitative --precision float32 --attack apgd --eps 2 --steps 10000 --vlm_model_name llava --vision_encoder_pretrained openai --verbose
```
With 10,000 iterations it takes about 2 hours per image on an A100 GPU.
### POPE
```shell
./bash/eval_pope.sh openai # for clean model evaluation
./bash/eval_pope.sh # for robust model evaluation - add path_to_ckpt in bash file
```
### SQA
```shell
./bash/eval_scienceqa.sh openai # for clean model evaluation
./bash/eval_scienceqa.sh # for robust model evaluation - add path_to_ckpt in bash file
```
|