Upload script.py
Browse files
script.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
+
from model import resnet101
|
8 |
+
|
9 |
+
|
10 |
+
def predict(test_metadata, root_path='/tmp/data/private_testset', output_csv_path='./submission.csv'):
|
11 |
+
|
12 |
+
data_transform = transforms.Compose(
|
13 |
+
[transforms.Resize(256),
|
14 |
+
transforms.CenterCrop(224),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
17 |
+
|
18 |
+
# load image
|
19 |
+
# img_name_list = ["1163.jpg", "1164.jpg"]
|
20 |
+
# id_list = [1, 2]
|
21 |
+
id_list = test_metadata['observation_id'].tolist()
|
22 |
+
img_name_list = test_metadata['filename'].tolist()
|
23 |
+
print(os.path.abspath(os.path.dirname(__file__)))
|
24 |
+
|
25 |
+
id2classId = dict()
|
26 |
+
id2prob = dict()
|
27 |
+
prob_list = list()
|
28 |
+
classId_list = list()
|
29 |
+
for img_name in img_name_list:
|
30 |
+
img_path = os.path.join(root_path, img_name)
|
31 |
+
assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
|
32 |
+
img = Image.open(img_path).convert('RGB')
|
33 |
+
img = data_transform(img)
|
34 |
+
img = torch.unsqueeze(img, dim=0)
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
# predict class
|
38 |
+
output = model(img.to(device)).cpu()
|
39 |
+
predict = torch.softmax(output, dim=1)
|
40 |
+
probs, classesId = torch.max(predict, dim=1)
|
41 |
+
prob = probs.data.numpy().tolist()[0]
|
42 |
+
classesId = classesId.data.numpy().tolist()[0]
|
43 |
+
prob_list.append(prob)
|
44 |
+
classId_list.append(classesId)
|
45 |
+
|
46 |
+
for i, id in enumerate(id_list):
|
47 |
+
if id not in id2classId.keys():
|
48 |
+
id2classId[id] = classId_list[i]
|
49 |
+
id2prob[id] = prob_list[i]
|
50 |
+
else:
|
51 |
+
if prob_list[i] > id2prob[id]:
|
52 |
+
id2classId[id] = classId_list[i]
|
53 |
+
id2prob[id] = prob_list[i]
|
54 |
+
classes = list()
|
55 |
+
for id in id_list:
|
56 |
+
classes.append(str(id2classId[id]))
|
57 |
+
test_metadata["class_id"] = classes
|
58 |
+
|
59 |
+
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
|
60 |
+
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
|
65 |
+
import zipfile
|
66 |
+
|
67 |
+
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
|
68 |
+
zip_ref.extractall("/tmp/data")
|
69 |
+
root_path = '/tmp/data/private_testset'
|
70 |
+
|
71 |
+
# root_path = "../../data_set/flower_data/val/n1"
|
72 |
+
|
73 |
+
# json_file = open(json_path, "r")
|
74 |
+
# index2class = json.load(json_file)
|
75 |
+
|
76 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
77 |
+
# create model
|
78 |
+
model = resnet101(num_classes=1784).to(device)
|
79 |
+
|
80 |
+
# load model weights
|
81 |
+
weights_path = "./resNet101.pth"
|
82 |
+
assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
|
83 |
+
model.load_state_dict(torch.load(weights_path, map_location=device))
|
84 |
+
|
85 |
+
# prediction
|
86 |
+
model.eval()
|
87 |
+
|
88 |
+
metadata_file_path = "./SnakeCLEF2024_TestMetadata.csv"
|
89 |
+
# metadata_file_path = "./test1.csv"
|
90 |
+
test_metadata = pd.read_csv(metadata_file_path)
|
91 |
+
predict(test_metadata, root_path)
|