[Deep RL Unit 1] Trained agent for LunarLander-v2, trained with wind, evaluated without wind
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-with-wind.zip +3 -0
- ppo-LunarLander-v2-with-wind/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-with-wind/data +105 -0
- ppo-LunarLander-v2-with-wind/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-with-wind/policy.pth +3 -0
- ppo-LunarLander-v2-with-wind/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-with-wind/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 203.02 +/- 112.78
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x788f09166170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788f09166200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788f09166290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788f09166320>", "_build": "<function ActorCriticPolicy._build at 0x788f091663b0>", "forward": "<function ActorCriticPolicy.forward at 0x788f09166440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x788f091664d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788f09166560>", "_predict": "<function ActorCriticPolicy._predict at 0x788f091665f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788f09166680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788f09166710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x788f091667a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x788f09170480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710691383584945734, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEC6eD77ssq8OhOZO4Yi2bmbEzq+K7+ougAAgD8AAIA/gPqWPXv09zld8ws74ag/PAQgn7uLhpm9AAAAAAAAAACAEaW9rGnOPmMs572ddQy/dFC5PVinErwAAAAAAAAAAAAQn7v2/DO6pocBO4NgOTZJCGa6Yu4zNQAAgD8AAIA/g5DFvnpug72fQR07qRmRObJRID7GNmW6AACAPwAAgD/APQm+hb3uOurYUz08X4a7o5bfvc45Rz0AAIA/AACAP1rv5j2PDkS6ZYjoOuvKyzdVQPs5SzD7uQAAgD8AAIA/5pI/vgFPuLwVypq8RDEqu7JtIj4E9gM8AACAPwAAgD8a29C9H6XBuVp42LvmRjI2aSiou+PWpLUAAIA/AACAP8Ay1D17SI66aH6CuyyvljtZsme7efWIPAAAgD8AAIA/AFSuPfbYJ7pIoJy696XXtFdG6TqOY7c5AACAPwAAgD+AKXg9Uvj5uSn5ubtLQGa2ttEgOwAtzjUAAIA/AACAPzPln70pxEa6EpIrOlkwmDUviRU7gw9FuQAAgD8AAIA/tsNwvjh+mbuscSo7OylJOG4f5TxitUW6AACAPwAAgD/aSM6+UdRhvbM157oCXii57+ELPtq6CjoAAIA/AACAPzaur75bp6O8Mtn8uxTkk7qiR+U9UnQxOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGYOgv+OwPmMAWyUTegDjAF0lEdAk817Wd3B6HV9lChoBkdATIHGZNO/L2gHS5NoCEdAk9FQHAymAXV9lChoBkdAZdWCbtqpLmgHTegDaAhHQJPSpSFXaJ11fZQoaAZHQDKXxlQMx49oB0uGaAhHQJPcRHavicZ1fZQoaAZHQGGBj8LrontoB03oA2gIR0CT3G+vhZQpdX2UKGgGR0Bgd+pQ1rIpaAdN6ANoCEdAk95/e1rqMXV9lChoBkdAYEfP420iQmgHTegDaAhHQJPkC5LAYYR1fZQoaAZHQFQUXrt3OfNoB0t/aAhHQJPl4K6WgOB1fZQoaAZHQGCOelsP8Q9oB03oA2gIR0CT6qDDjzZpdX2UKGgGR0BYmT5XU6PsaAdN6ANoCEdAk+7B5ooNNXV9lChoBkdAY99XiiqQzWgHTegDaAhHQJQQ0KIBRyh1fZQoaAZHQEcYeYlY2bZoB0uAaAhHQJQdX7Hhjvx1fZQoaAZHQGEa2zv7WNFoB03oA2gIR0CUH2dpqREGdX2UKGgGR0BfNsMmWt2caAdN6ANoCEdAlB/IhMajvnV9lChoBkdAYu+q3mV7hWgHTegDaAhHQJQiQiMYMv11fZQoaAZHQGcZQjUutfZoB03oA2gIR0CUJJSVGCqZdX2UKGgGR0BjFX7xd6cBaAdN6ANoCEdAlCaIyTINmXV9lChoBkdAKEZxiobXH2gHS4loCEdAlCiVw97ngnV9lChoBkdAYxVHDrJKa2gHTegDaAhHQJQo1Ea2nbZ1fZQoaAZHwC146hg3LmpoB0uJaAhHQJQo5cSoOx11fZQoaAZHQGExlcpsoDxoB03oA2gIR0CUKeAood+5dX2UKGgGR0BkrsJlar3kaAdN6ANoCEdAlCthun/DL3V9lChoBkdAYO2EKVpsXWgHTegDaAhHQJQumVeKKpF1fZQoaAZHQCA6GWUr08NoB0uYaAhHQJQvBHavicZ1fZQoaAZHQDZeJpFkQPJoB0uIaAhHQJQwRkFwDNh1fZQoaAZHQCO50+1SflJoB0upaAhHQJQ0nM1TBIp1fZQoaAZHQF/l21UlzEJoB03oA2gIR0CUN5hScbzcdX2UKGgGR0BpL+U+s5n2aAdN6ANoCEdAlDkoMz/IbXV9lChoBkdAZe6/WUbDM2gHTegDaAhHQJQ+C5Etuk11fZQoaAZHQGJorKFIuoRoB03oA2gIR0CUP4lcQiA2dX2UKGgGR0BY6jB2wFC+aAdN6ANoCEdAlELwqAjIJnV9lChoBkdAWt0eNkvsaGgHTegDaAhHQJRGb7WNFSd1fZQoaAZHv/Dvc8DB/I9oB0uQaAhHQJRPLGkvboN1fZQoaAZHQEBhI3irDIloB0udaAhHQJRup6NVBD51fZQoaAZHQGhW6UaAFxJoB01UAmgIR0CUdRUNrj5sdX2UKGgGR0BiuxSzgMtsaAdN6ANoCEdAlHf3zpX6qXV9lChoBkdAY7Vp/PPcBWgHTegDaAhHQJR/EvIwM6R1fZQoaAZHQGB3nE/B3zNoB03oA2gIR0CUgepWFN+LdX2UKGgGR0A2vZpztCzDaAdLkGgIR0CUhbaX8fmtdX2UKGgGR0BkLbPMSsbOaAdN6ANoCEdAlIchi1Aqu3V9lChoBkdAYTRGNJe3QWgHTegDaAhHQJSHd0W/JvJ1fZQoaAZHQGRPpP69CeFoB03oA2gIR0CUiM717IDHdX2UKGgGR0BXoxlcyFfzaAdN6ANoCEdAlI8luzhP03V9lChoBkdAYv246wMYuWgHTegDaAhHQJSPrv4M4Ll1fZQoaAZHQGgoiLEUCaJoB03oA2gIR0CUkS7OmixndX2UKGgGR0A33Npudf9haAdLjmgIR0CUkUBPsRg7dX2UKGgGR0A/MKVY6nzhaAdLpmgIR0CUkvAOJ+DwdX2UKGgGR0AsQcDr7fpEaAdLk2gIR0CUmVt2s7uEdX2UKGgGR0BlVfQa72+PaAdN6ANoCEdAlJl10tAcDXV9lChoBkdAZEUdFOO802gHTegDaAhHQJSbNNSIgvF1fZQoaAZHQGjNWCmMwURoB01WAWgIR0CUn/pWmxdIdX2UKGgGR0Bg/nU8V58jaAdN6ANoCEdAlKBOfqX4TXV9lChoBkdASBNe2NNrTGgHTegDaAhHQJShsvpQk5Z1fZQoaAZHQGTRJdjXnQpoB03oA2gIR0CUqIoB7u2JdX2UKGgGR0BkJGk56t1ZaAdN6ANoCEdAlM/1u3trsXV9lChoBkdAZR1L26ClJ2gHTegDaAhHQJTVgohIOH51fZQoaAZHQD/9o/RmbspoB0uaaAhHQJTeLAXVLBd1fZQoaAZHQGCYbB42S+xoB03oA2gIR0CU3t4yoGY8dX2UKGgGR0BmjRhMJx//aAdN6ANoCEdAlOFzL0SRKnV9lChoBkdAMsndCVrylWgHS6NoCEdAlORjkMkQgHV9lChoBkdAZQBg4wRGt2gHTegDaAhHQJTkyu1WsBB1fZQoaAZHQDmiy/sVtXRoB0uDaAhHQJTn2OtGNJh1fZQoaAZHQD6tAdGRV6xoB0uRaAhHQJTpNN/OMVF1fZQoaAZHQE30xM36yjZoB0uMaAhHQJTrPhsImgJ1fZQoaAZHQGEePfbblBBoB03oA2gIR0CU7bANXo1UdX2UKGgGR0BhoNHrhR64aAdN6ANoCEdAlO/yon8baXV9lChoBkdAXGB8twrDqGgHTegDaAhHQJTwBsKsuFp1fZQoaAZHQF91pZwGW2RoB03oA2gIR0CU8c2OhkAhdX2UKGgGRz/8p66asp5NaAdLkWgIR0CU9SFTNt65dX2UKGgGR0BjdTgIhQnAaAdN6ANoCEdAlPgwo9cKPXV9lChoBkdAZ1Td+ocaO2gHTegDaAhHQJT4RYPoV211fZQoaAZHQCCOYv38GcFoB0uXaAhHQJT52xVyWAx1fZQoaAZHQF+ZU/wAlv9oB03oA2gIR0CU+dygf2bodX2UKGgGR0BliIWi1y/9aAdN6ANoCEdAlP5RGhEjPnV9lChoBkdAZhoJCSidrmgHTegDaAhHQJT+mkM1CPZ1fZQoaAZHQGeev2oNutRoB03oA2gIR0CU/92CuloEdX2UKGgGR8A1OLmZE2HdaAdLhmgIR0CVAEcs189fdX2UKGgGR0BjMhA8jiXIaAdN6ANoCEdAlQVflEJBxHV9lChoBkdAMFW9cry1/mgHS7doCEdAlQpJXIU8FXV9lChoBkfAEZ4tHxz7uWgHS41oCEdAlRXRdUsFuHV9lChoBkdAWQuJbdJrcmgHTegDaAhHQJVCUoScslN1fZQoaAZHQGMGOez2OABoB03oA2gIR0CVQtfMOf/WdX2UKGgGR0BkoAm9g4OuaAdN6ANoCEdAlUZ16NVBEHV9lChoBkdAYDQgg5imVWgHTegDaAhHQJVIBqIrOJN1fZQoaAZHQGR+3KKYRd1oB03oA2gIR0CVTK2P1ct5dX2UKGgGR0BlY6bvw3HaaAdN6ANoCEdAlU79n003wXV9lChoBkdAXRwjVx0dR2gHTegDaAhHQJVQ5y7wrlN1fZQoaAZHQGJf8+iaiK1oB03oA2gIR0CVVFDhtLtedX2UKGgGR0BnUqkAPuohaAdN6ANoCEdAlVdYJAt4A3V9lChoBkdAVzh2MbWEsmgHTegDaAhHQJVZABRyfcx1fZQoaAZHQGc29eQdS2poB03oA2gIR0CVWQKu0TlDdX2UKGgGR0BkGhhnanJlaAdN6ANoCEdAlV1RVQyhz3V9lChoBkdAWqOkuYhMamgHTegDaAhHQJVe+NuLrHF1fZQoaAZHQGOKOa4MF2VoB03oA2gIR0CVX3ELH+6zdX2UKGgGR0AMz4Ju2qkuaAdLh2gIR0CVX45LAYYSdX2UKGgGR0A7wXcQAdXDaAdLl2gIR0CVYd17IDHPdX2UKGgGR0BhFJbbDdgwaAdN6ANoCEdAlWSWPLgXM3V9lChoBkdAOArLdN34bmgHS4hoCEdAlWdlSwW30HV9lChoBkfAGxpMpPRAr2gHS6JoCEdAlXGPACW/rXV9lChoBkdAZnEAxSHdoGgHTegDaAhHQJV0mPbO/tZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVkwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAAACAvwAAgL+UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAAAAgD8AAIA/lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1. -1.]", "high": "[1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-with-wind.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee3c45dbae1d3ae30a636f19c7b1906e3838f1c798a19ea321e5f3b1c8cf8c1f
|
3 |
+
size 147940
|
ppo-LunarLander-v2-with-wind/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-with-wind/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x788f09166170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788f09166200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788f09166290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788f09166320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x788f091663b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x788f09166440>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x788f091664d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788f09166560>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x788f091665f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788f09166680>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788f09166710>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x788f091667a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x788f09170480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710691383584945734,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEC6eD77ssq8OhOZO4Yi2bmbEzq+K7+ougAAgD8AAIA/gPqWPXv09zld8ws74ag/PAQgn7uLhpm9AAAAAAAAAACAEaW9rGnOPmMs572ddQy/dFC5PVinErwAAAAAAAAAAAAQn7v2/DO6pocBO4NgOTZJCGa6Yu4zNQAAgD8AAIA/g5DFvnpug72fQR07qRmRObJRID7GNmW6AACAPwAAgD/APQm+hb3uOurYUz08X4a7o5bfvc45Rz0AAIA/AACAP1rv5j2PDkS6ZYjoOuvKyzdVQPs5SzD7uQAAgD8AAIA/5pI/vgFPuLwVypq8RDEqu7JtIj4E9gM8AACAPwAAgD8a29C9H6XBuVp42LvmRjI2aSiou+PWpLUAAIA/AACAP8Ay1D17SI66aH6CuyyvljtZsme7efWIPAAAgD8AAIA/AFSuPfbYJ7pIoJy696XXtFdG6TqOY7c5AACAPwAAgD+AKXg9Uvj5uSn5ubtLQGa2ttEgOwAtzjUAAIA/AACAPzPln70pxEa6EpIrOlkwmDUviRU7gw9FuQAAgD8AAIA/tsNwvjh+mbuscSo7OylJOG4f5TxitUW6AACAPwAAgD/aSM6+UdRhvbM157oCXii57+ELPtq6CjoAAIA/AACAPzaur75bp6O8Mtn8uxTkk7qiR+U9UnQxOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGYOgv+OwPmMAWyUTegDjAF0lEdAk817Wd3B6HV9lChoBkdATIHGZNO/L2gHS5NoCEdAk9FQHAymAXV9lChoBkdAZdWCbtqpLmgHTegDaAhHQJPSpSFXaJ11fZQoaAZHQDKXxlQMx49oB0uGaAhHQJPcRHavicZ1fZQoaAZHQGGBj8LrontoB03oA2gIR0CT3G+vhZQpdX2UKGgGR0Bgd+pQ1rIpaAdN6ANoCEdAk95/e1rqMXV9lChoBkdAYEfP420iQmgHTegDaAhHQJPkC5LAYYR1fZQoaAZHQFQUXrt3OfNoB0t/aAhHQJPl4K6WgOB1fZQoaAZHQGCOelsP8Q9oB03oA2gIR0CT6qDDjzZpdX2UKGgGR0BYmT5XU6PsaAdN6ANoCEdAk+7B5ooNNXV9lChoBkdAY99XiiqQzWgHTegDaAhHQJQQ0KIBRyh1fZQoaAZHQEcYeYlY2bZoB0uAaAhHQJQdX7Hhjvx1fZQoaAZHQGEa2zv7WNFoB03oA2gIR0CUH2dpqREGdX2UKGgGR0BfNsMmWt2caAdN6ANoCEdAlB/IhMajvnV9lChoBkdAYu+q3mV7hWgHTegDaAhHQJQiQiMYMv11fZQoaAZHQGcZQjUutfZoB03oA2gIR0CUJJSVGCqZdX2UKGgGR0BjFX7xd6cBaAdN6ANoCEdAlCaIyTINmXV9lChoBkdAKEZxiobXH2gHS4loCEdAlCiVw97ngnV9lChoBkdAYxVHDrJKa2gHTegDaAhHQJQo1Ea2nbZ1fZQoaAZHwC146hg3LmpoB0uJaAhHQJQo5cSoOx11fZQoaAZHQGExlcpsoDxoB03oA2gIR0CUKeAood+5dX2UKGgGR0BkrsJlar3kaAdN6ANoCEdAlCthun/DL3V9lChoBkdAYO2EKVpsXWgHTegDaAhHQJQumVeKKpF1fZQoaAZHQCA6GWUr08NoB0uYaAhHQJQvBHavicZ1fZQoaAZHQDZeJpFkQPJoB0uIaAhHQJQwRkFwDNh1fZQoaAZHQCO50+1SflJoB0upaAhHQJQ0nM1TBIp1fZQoaAZHQF/l21UlzEJoB03oA2gIR0CUN5hScbzcdX2UKGgGR0BpL+U+s5n2aAdN6ANoCEdAlDkoMz/IbXV9lChoBkdAZe6/WUbDM2gHTegDaAhHQJQ+C5Etuk11fZQoaAZHQGJorKFIuoRoB03oA2gIR0CUP4lcQiA2dX2UKGgGR0BY6jB2wFC+aAdN6ANoCEdAlELwqAjIJnV9lChoBkdAWt0eNkvsaGgHTegDaAhHQJRGb7WNFSd1fZQoaAZHv/Dvc8DB/I9oB0uQaAhHQJRPLGkvboN1fZQoaAZHQEBhI3irDIloB0udaAhHQJRup6NVBD51fZQoaAZHQGhW6UaAFxJoB01UAmgIR0CUdRUNrj5sdX2UKGgGR0BiuxSzgMtsaAdN6ANoCEdAlHf3zpX6qXV9lChoBkdAY7Vp/PPcBWgHTegDaAhHQJR/EvIwM6R1fZQoaAZHQGB3nE/B3zNoB03oA2gIR0CUgepWFN+LdX2UKGgGR0A2vZpztCzDaAdLkGgIR0CUhbaX8fmtdX2UKGgGR0BkLbPMSsbOaAdN6ANoCEdAlIchi1Aqu3V9lChoBkdAYTRGNJe3QWgHTegDaAhHQJSHd0W/JvJ1fZQoaAZHQGRPpP69CeFoB03oA2gIR0CUiM717IDHdX2UKGgGR0BXoxlcyFfzaAdN6ANoCEdAlI8luzhP03V9lChoBkdAYv246wMYuWgHTegDaAhHQJSPrv4M4Ll1fZQoaAZHQGgoiLEUCaJoB03oA2gIR0CUkS7OmixndX2UKGgGR0A33Npudf9haAdLjmgIR0CUkUBPsRg7dX2UKGgGR0A/MKVY6nzhaAdLpmgIR0CUkvAOJ+DwdX2UKGgGR0AsQcDr7fpEaAdLk2gIR0CUmVt2s7uEdX2UKGgGR0BlVfQa72+PaAdN6ANoCEdAlJl10tAcDXV9lChoBkdAZEUdFOO802gHTegDaAhHQJSbNNSIgvF1fZQoaAZHQGjNWCmMwURoB01WAWgIR0CUn/pWmxdIdX2UKGgGR0Bg/nU8V58jaAdN6ANoCEdAlKBOfqX4TXV9lChoBkdASBNe2NNrTGgHTegDaAhHQJShsvpQk5Z1fZQoaAZHQGTRJdjXnQpoB03oA2gIR0CUqIoB7u2JdX2UKGgGR0BkJGk56t1ZaAdN6ANoCEdAlM/1u3trsXV9lChoBkdAZR1L26ClJ2gHTegDaAhHQJTVgohIOH51fZQoaAZHQD/9o/RmbspoB0uaaAhHQJTeLAXVLBd1fZQoaAZHQGCYbB42S+xoB03oA2gIR0CU3t4yoGY8dX2UKGgGR0BmjRhMJx//aAdN6ANoCEdAlOFzL0SRKnV9lChoBkdAMsndCVrylWgHS6NoCEdAlORjkMkQgHV9lChoBkdAZQBg4wRGt2gHTegDaAhHQJTkyu1WsBB1fZQoaAZHQDmiy/sVtXRoB0uDaAhHQJTn2OtGNJh1fZQoaAZHQD6tAdGRV6xoB0uRaAhHQJTpNN/OMVF1fZQoaAZHQE30xM36yjZoB0uMaAhHQJTrPhsImgJ1fZQoaAZHQGEePfbblBBoB03oA2gIR0CU7bANXo1UdX2UKGgGR0BhoNHrhR64aAdN6ANoCEdAlO/yon8baXV9lChoBkdAXGB8twrDqGgHTegDaAhHQJTwBsKsuFp1fZQoaAZHQF91pZwGW2RoB03oA2gIR0CU8c2OhkAhdX2UKGgGRz/8p66asp5NaAdLkWgIR0CU9SFTNt65dX2UKGgGR0BjdTgIhQnAaAdN6ANoCEdAlPgwo9cKPXV9lChoBkdAZ1Td+ocaO2gHTegDaAhHQJT4RYPoV211fZQoaAZHQCCOYv38GcFoB0uXaAhHQJT52xVyWAx1fZQoaAZHQF+ZU/wAlv9oB03oA2gIR0CU+dygf2bodX2UKGgGR0BliIWi1y/9aAdN6ANoCEdAlP5RGhEjPnV9lChoBkdAZhoJCSidrmgHTegDaAhHQJT+mkM1CPZ1fZQoaAZHQGeev2oNutRoB03oA2gIR0CU/92CuloEdX2UKGgGR8A1OLmZE2HdaAdLhmgIR0CVAEcs189fdX2UKGgGR0BjMhA8jiXIaAdN6ANoCEdAlQVflEJBxHV9lChoBkdAMFW9cry1/mgHS7doCEdAlQpJXIU8FXV9lChoBkfAEZ4tHxz7uWgHS41oCEdAlRXRdUsFuHV9lChoBkdAWQuJbdJrcmgHTegDaAhHQJVCUoScslN1fZQoaAZHQGMGOez2OABoB03oA2gIR0CVQtfMOf/WdX2UKGgGR0BkoAm9g4OuaAdN6ANoCEdAlUZ16NVBEHV9lChoBkdAYDQgg5imVWgHTegDaAhHQJVIBqIrOJN1fZQoaAZHQGR+3KKYRd1oB03oA2gIR0CVTK2P1ct5dX2UKGgGR0BlY6bvw3HaaAdN6ANoCEdAlU79n003wXV9lChoBkdAXRwjVx0dR2gHTegDaAhHQJVQ5y7wrlN1fZQoaAZHQGJf8+iaiK1oB03oA2gIR0CVVFDhtLtedX2UKGgGR0BnUqkAPuohaAdN6ANoCEdAlVdYJAt4A3V9lChoBkdAVzh2MbWEsmgHTegDaAhHQJVZABRyfcx1fZQoaAZHQGc29eQdS2poB03oA2gIR0CVWQKu0TlDdX2UKGgGR0BkGhhnanJlaAdN6ANoCEdAlV1RVQyhz3V9lChoBkdAWqOkuYhMamgHTegDaAhHQJVe+NuLrHF1fZQoaAZHQGOKOa4MF2VoB03oA2gIR0CVX3ELH+6zdX2UKGgGR0AMz4Ju2qkuaAdLh2gIR0CVX45LAYYSdX2UKGgGR0A7wXcQAdXDaAdLl2gIR0CVYd17IDHPdX2UKGgGR0BhFJbbDdgwaAdN6ANoCEdAlWSWPLgXM3V9lChoBkdAOArLdN34bmgHS4hoCEdAlWdlSwW30HV9lChoBkfAGxpMpPRAr2gHS6JoCEdAlXGPACW/rXV9lChoBkdAZnEAxSHdoGgHTegDaAhHQJV0mPbO/tZ1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVkwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAAACAvwAAgL+UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAAAAgD8AAIA/lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True]",
|
75 |
+
"bounded_above": "[ True True]",
|
76 |
+
"_shape": [
|
77 |
+
2
|
78 |
+
],
|
79 |
+
"low": "[-1. -1.]",
|
80 |
+
"high": "[1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo-LunarLander-v2-with-wind/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3439b9bc6761af8fc99a6134eec5da1ee10bc318b3613fb8b6220c5abfcd4b96
|
3 |
+
size 88033
|
ppo-LunarLander-v2-with-wind/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43b05b91b8d1f339778449d5507903f3f9e77df41dd5213ea8c53a420588ed5d
|
3 |
+
size 43567
|
ppo-LunarLander-v2-with-wind/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-with-wind/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (149 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 203.02327140000003, "std_reward": 112.78014201670442, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-17T16:43:17.416657"}
|